\odelng the

Ongins of
. nequality

10/31/23



How does Inequality

—merge in Spatial ano

Soclal Systems”

—mergence of spatial Inequality

—mergence of Ineguality througn
poltical polarization
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Part 1

The Geograpny of Inequality



Spatial Inequality

;ow-lnoome Households (more than 1 mile from a grocery) :e.uh Indicator: Obesity
5% ﬁ;&%}‘ - e (Y A N H R
= vy [ T R L e
- Spatial Inequality: social Inequality the arises from TVEEARA ¢ s~ i o Ve
the unegual distribution of resources ,‘i‘;,u'i",:o‘.’;b, [35% Aduuo.,;:,m‘“
« D0Clal Uesers: gpatial regions with Iimited access to RO, ooy 2006} K D)
soclally iImportant goods and servicegu N — ———
* 000 Deserts: Low access to nutritious 1ooo ~ 3 ‘ .
affects 39.5 millon Amercans|1]. Strong % Z: | '?\ o 5
correlation tetween access o Nutrtious food and " i ':g
Nealth outcomes e 2 G
»  Social deserts for books [2], ransit [3] and other g D N el A
SQC@HV impoﬁamt QOOdS Source: Food Environment Atlas, Us. Department of Agriculture, Economic Research Service

1M, V. Ploeg et al., "Access to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their Conseguences,”
2] 5. B. Neuman and N. Moland, "Book Deserts: The Conseguences of Income Segregation on Children's Access to Print,” Urban Education, vol. 54, no. 1, pp. 126-147, Jan. 2019
[3]d. Jiao and M., Dilivan, "Transit Deserts: The Gap between Demand and Supply,” JPT, vol. 16, no. 3, pp. 23-39, Sep. 2013



Changing systems develop
neguality

« Spatial resources are affected by
aNd changes In supply.

Disaster-induced displacement worldwide in 2012

USA.

. Hurricane Sandy
| 776,000 displaced

' China
Typhoon Haikui floods
2.1 million displaced
Monsoon floods (June/uly)
Whdd 1.4 milion displaced

. Twin typhoons Saola & Damrey
867,000 displaced

Typhoon Kai-Tak

530,000 aisplaced
Monsoon floods (April/May)

\hbd) £43000 displaced

‘” Earthquake in Yunnan
185,000 displaced

Monsoon floods (1st period)
bbb 5.9 milion displaced

mﬁo:sm (2nd period)
| -5 [l
«  (Century long rural decline reversed by COVID TR — =
32.4 million  ara L8 fp-spmed e
| | | | | i B | P, Souﬂvwe;to'r:\msoon

» (Climate/disaster induced displacement| 1] wil s —— Do | |

! e PN A AP e All countries with new displacement | 151000 aplaced ot

d |Sp‘@@@ 26@ M| ‘ ‘ ON p@@p‘@ by 2@6@ iIDMC &= [ e, N ton W 1% of pep s ook o

- Changes in supply:
» Natural disasters.
«  Hurcane Katrina and Sandy/| 2]
»  Policy Induced changes In supply
» Dobbs and Abortion Access

[1] Katharine J. Mach and A. R. Siders, "Reframing Strategic, Managed Retreat for Transformative Climate Adaptation”, Science 372, no. 6648 (2021): 1294-1299 B
2] Mary W. Chaffee, Nell 5. Oster, and Associate Editors. "The Role of Hospitals in Disaster”. en. In; Disaster Medicine (20006). Publisher: Elsevier




“olicy Induced Changes: Abortion Clinics

Predicted Decline In Legal Abortions

* VWhie In 2008 the median distance traveled to an abortion
clinic was only 15 mies, some women had to travel much

farther, | /% of woman needed to travel at least H0) mies
o the nearest clinics| 3]

* N lexas and Louisiana:
. . 8
« e Jobbs median commute: Z 7 mins ° 8
« Ost LoDos median commute: © nours “ &
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New York Times: Where Abortion Access Would Decline if Roe V. Wade \Were Overtumed(May 2021)

3] J. M. Lindo, C. K. Myers, A. Schlosser, and S. Cunningham, "How Far Is Too Far? New Bvidence on Abortion Clinic Closures, Access, and Abortions,” J. Human Resources, vol. 55, no. 4, pp.
1137-1160, Oct, 2020



—esearch Question: Can we map the geograpny of nequalny?
VWhat can optimal faclity allocation problems tell us apout the misalocation of
faclities




Optimal Faclility Allocation



-ormalism: How do we allocate spatia Resource Densty
resources optimally” D(r)

Fopulation Density

p(T)

- Given a population density p(r) and a bounded
region €2

. A resource can be allocated over €2, specified by D(r)

» [f resources as discrete set of faclities. Imagine p
feciities {ry...r,} ity
v

P
D(r) = ) &(r—r) l
=1

» The Problem: Find a resource density D(r) which
extremizes some objective functional FD(r)]



» AssSUME each person goes to nearest faclity
Area of coverage Is the Voronol cell

P Median Problem
Vve want to 1ind the set of p faclities that extremes the following function:

o

p
F(ry,ry...1r) = Z drp(r)|r —r; K
i=1 Vi

Objective function is population weighted average distance to nearest facility to some power

Voronol Cel
V.

l

—acity

i




4

F(ry,ry...r,)) = ZJ drp(r)\r—ri\ﬂ
i=1 Vi

Objective function is population weighted average distance to nearest facility to some power

« How do we solve this”? - Approximations!
« \When the number of facllities p Is sufficiently large, the population of each cell s constant:

Ir—r;| = (|r—1;]) = g[s(r)"]
g Is a shape factor of O(1)

Retumns area of cel that r is in

F=| drglpm[sm)]"* + A( p) _[
Average distance to the nearest facility Vi
to some power [
When is our objective function is extremized(oF = 0) D(l‘) = S(l’)
when the above power-law relation exists between the and the

population density p(r)




2
Objective function is population weighted average distance to nearest facility to some power D(r) — — X p (r)_ﬁ )

P
y s(T)
F(ri,ry...r)) = drp(r)lr—rilﬁ
p When our objective function is extremized when the above power-law relation exists between the
i=1 Vi and the population density p(r)

VVnat does the objective function represent’?

F is minimized (0%F > 0)ior > 0 F is maximized (6°F < 0) for f € (—2,0)
fp=1 =0

F(r;,ry...r,) = Zl dV.dl',O(l')Ul’— r;|) F(r,ry...r,) = i drp(r)

Average distance to
nearest facility

Total cell
population

When f = 1 we minimize the average distance to the nearest facility When /5 = () we maximize the total cell population

_2 2 2 1
D(r) « p(r)T+z = p(r)3 D(r) x p(r)7+z = p(r)
An optimal faciity density D(r) should scale as the population p(r) to the 2/3 An optimal facility density D(rr) should scale as the population p(r)
p = 1 minimizes social opportunity cost we should see this for public f = 0 maximizes profit we should see this for commercial facilities
facilities

4] J. |, Parkand B. J. Kim, "Generalized p-median problem for the optimal distribution of faciliies,” J. Korean Phys. Soc., vol. 80, no. 4, pp. 352-358, Feb. 2022, doi: 10.100//s40042-021-00361-2.
5] Jd. Um, S.-W. son, 5.4l Lee, H. Jeong, and B. J. Kim, "Scaling laws between population and facility densities,” Proceedings of the National Academy of sciences, vol, 106, no. 34, pp. 14236-14240, Aug. 2009,
dor 10.1073/pnas.0901898106.



https://doi.org/10.1007/s40042-021-00361-2
https://doi.org/10.1073/pnas.0901898106

Quantifying Facility Misallocation



1 Create Voronol Cells based on faclity <+ 7Or ach cell, calculaie population 3. Fit data to a Reduced Major Axis(BMA)
placements density, p and regression[7], slope s scaling exponent

empirical
alpha=0.926,R"2=0.876
alpha=1

alpha=2/3

I
N

I
N

Log Facility Density

I
w

~ num of people

p — _4
drea

-1 0 1 2 3 4
Log Population Density

log(p)



Log Facility Density

Facility Data Scaling

SaNKS
SChooIS
—  empirical SC@HWQ for {1 =—— empirical
1 — alpha=0.768,R"2=0.848 Schools: — alpha=0.926,R"2=0.876
— alpha=1 L] — alpha=1
— alpha=2/3 = .70 0 — alpha=2/3
0
=
~ublic faclities should 2 -
- nave an exponent Q
close to 2/3 3 _,
©
LL
_2 87
Private facilties -
-3
. should have an
exponent close to
-4
- Sedling for
-1 0 1 2 3 4 sanks: 0.92 1 0 1 5 3 A

Log Population Density Log Population Density



Log Facility Density

I
-

Residuals: Deserts and Oases

reduced major axis

empirical

alpha=0.768,R"*2=0.848
alpha=1 O
alpha=2/3

Social
QOasis

County, State

Social
Deserts

-1 0 1 2 3 4
Log Population Density

New York, New York
Miami-Dade, Florida
Los Angeles, California
Queens, New York
Contra Costa, California
Oakland Mlc_hl%an
King, Washington
Bronx, New York
Alameda, California
Santa Clara, California
San Diego, California
Broward, Florida
Sacramento, California
Kings, New York
Wayne, Michigan
Suffolk, New York
Franklin, Ohio

Cook, lllinois

Orange, Florida
Orange, California
Hillsborough, Florida
Hennepin, Minnesota

Philadelphia, Pennsylvania

Salt Lake, Utah

Travis, Texas

Clark, Nevada

Bexar, Texas

Nassau, New York
Riverside, California
Cuyahoga, Ohio

arris, Texas

. Dallas, Texas
Middlesex, Massachusetts
Allegheny, Pennsylvania
Tarrant, Texas

Palm Beach, Florida
Maricopa, Arizona

San Bernardino, California
Fairfax, Virginia

-0.8

Abortion Cl

INICS

RMA Residual by County (Population > 1 Million)

-0.6

-0.2
RMA Residual

0.0

0.2

0.4

Social
QOasis



Abortion clinics access Is Not simply partisan

Social
eserts

County, State

RMA Residual by County (Population > 1 Million)

New York, New York
Miami-Dade, Florida
Los Angeles, California
Queens, New York
Contra Costa, California
Oakland, Michigan
King, Washington
Bronx, New York
Alameda, California
Santa Clara, California
San Diego, California
Broward, Florida
Sacramento, California
Kings, New York
Wayne, Michigan
Suffolk, New York
Franklin, Ohio

Cook, lllinois

Orange, Florida
Orange, California
Hillsborough, Florida

_ Hennepin, Minnesota
Philadelphia, Pennsylvania
Salt Lake, Utah

Travis, Texas

Clark, Nevada

Bexar, Texas

Nassau, New York
Riverside, California
Cuyahoga, Ohio

arris, Texas

Dallas, Texas

meg eny, Pennsylvania 00 AcCess In

Tarrant, Texas |
sUoUnoS of liveral

Palm Beach, Florida

e —— cities

-0.8 -0.6 -0.4 0.0 0.2 0.4

Socia
(ases

I
o
N

RMA Residual



Mapping Inequality Abortion Clinics

\ore access than expected In westem states

~O0r Access N the south

ENPISOg VING



CHANGES IN
AND SUPPLY




—0st office scalng exponent has dropped from 0.6 10 0.0

PO S-t Oﬁc ‘ Ce S C a‘ ‘ N g commercial to public transition

Number of Open US Post Office Locations By Year

Post Office Placement In 1900
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40000

30000

# of Open Post Offices

20000

10000

1

1800 1850 1900 1950 2000

Major Axis Regression Exponent Over Time

0.70 -

Major Axis Regression Exponent

1900 1920 1940 1960 1980 2000
Year



Changes In Supply:
Abortion Clinics

Xpet




Changes in Supply: b coma Lo
Abortion Clinics e T

How much does Doblbs change the travel distance to the
nearest abortion clinic’
Compare empirical layout to optimal layout

Facility Distance CCDF

dobbs = pre Dobbs

10

Post Doblbs Optimal Layout
c . n
'.g 10-2 . - ._' r ‘—- D
8. : y 1 - -.4 oI -

]
E o ~ & =1 L %
N " | n
J
10" N, = ‘
kind W
_ - empirical '
5 dobbs = post Dobbs — simulgtad_coord _ -

10 & B 5 l'.

10"
c e
2 107° .
g
a 10_3 [ \ y T, T{;

10 ‘(v

0.0 0.2 0.4 0.6 0.8 1.0 1.2

distance 1e6



Hosptial Fragility

I:ragm-ty _ HQSpita

—ragiity:  The fragiity of facllity 1'1s the decrease In §
opjective function caused by removing faclity | from g
the genome 10
Hospitals.
« Boise D, Buffalo NY, st George UT, Bangor ME
Abortion Clinics: 10° o o
N M@mphis TN, e Rock AK, Jackson M\, 0000 0002 0004 0006 0008  0.010
Corpus Cristi TX, Las Vegas NV and Fargo, ND Clinic Fragility
Conclusion: 10°
*  Hospitals which are In urban centers in othenyse | .
'ural areas are fragie ADorton LINics
»  (Clnics which are in southern cities are the most o
fragle )
. 10
10 O EE

0.000 0.001 0.002 0.003 0.004 0005 0006 0.007



Conclusion

e Scalng relationships derved from optimal facllity
olacement can pe used to loentity social deserts
ANd sSOClal 0ases

e (Changes in demand are detectable through
scalng exponent changes

o SOCIAl deserts IN aboriton clinic access don Not
fall along simply partisan lInes




Part 2.

—mergence o Polarization




INTRODUCTION
BACKGROUND

Groups Groups Groups

Social interactions are not pairwise - groups matter!

How do higher-order interactions affect the development of consensus?

VOTER MODEL AMES 1/19



VOTER MODELS

LINEAR VOTER MODEL

Step 3: Adopt the state of that node

Step 1: Select a node at random

down spin(o; = -1) .
. up spin(o;, = 1) ‘

Voter Model Steps

1. Arandom node j with state o; € {—1, 1}, is selected

2. The selected node adopts the spin o; of a randomly selected neighbor j € N
3. Process is repeated until consensus is reached.

4. Transition rate for a node o, o fraction of disagreeing neighbors

VOTER MODEL AMES 2/19



VOTER MODELS
NON-LINEAR

Q Voter Model Steps?

1. Arandom node ¢; selects g of its neighbors. If Transition Probability by g
all of its neighbors have the same spin, o; 10+
adopts that spin

2. Transition rate for a node
g;  fraction of disagreeing neighbors?

Flip Probability

o
L
1

What does g do?

0.2 1

» q controls the conformity bias of the model. 00 ]

0.0 0.2 0.4 0.6 0.8 1.0

» if g > 1. conformist nodes nodes, if g < 1, we - craction of Disagreeine Nodes
get the hipster nodes nodes.

4Castellano et al., 2009.

VOTER MODEL AMES 3/19



VOTER MODELS

VOTER MODEL ON HIGHER ORDER NETWORKS

> Each node belongs to a set of cliques. Nodes Concept
iInteract with other nodes in the same clique.

» Higher-order network topology generated by . ‘\ '/
)WL E

the model proposed by Newman?.

Description

The model is parameterized by two distributions Topology Formalism
1. N the number of nodes
2. M the number of cliques
3. {pn} the distribution of nodes per clique
4. {gm} the distribution of cliques per node

4Newman, 2003.

VOTER MODEL AMES 5/19



VOTER MODELS

VOTER MODEL ON HIGHER ORDER NETWORKS

Clique Coupling

(kex) determines the coupling between groups
K0.0 .., K:0.1 o

e _ e
oo .... :.0" ’ o® ’......
% o ® :~ S ° \ p
®e % ® ° ® e
LX) o | S
.{ : © :.0 . . ..o... o
:. 0.. . 00 .. oe®
©
[ [ P8 o % .. ®
o_ o°
° .0. ’ .. : ’.3' o
‘.... o\ .o : o .0..0
® 9 . . o o ®
® ..’ oy ’ O 8. o .
o e o
o8 %o o
.'.‘o’ o

VOTER MODEL AMES
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DERIVING THE MASTER EQUATION
THE FIRST TERM

» Approximate master equations(AMES) are high
accuracy approximations of binary state
dynamics on networks?

» Occupation number : G
Gy, the fraction of the system in a clique with u down spin(o; = 1)_—
up spins.

» Example: up spin out flux : the rate at which
down spins flip to up spins

N —
— \\
\~_—-—/

fraction of up spins in clique

occupation number

) q =
u clique size:n =7
P(Gu — Gu_|_1) — Gu (n — U) ( E ) up spin countu = 3
up spin out quxT T of down spins in clique

4Gleeson, 2011; Hébert-Dufresne et al., 2010; St-Onge et al., 2021.

VOTER MODEL AMES 7/19



DERIVING THE MASTER EQUATION
THE WHOLE SHEBANG

upflip influx
[(n-u+1)(u-1)/n]G.+

upflip outflux
[(n-u)(u/n)]Gu

—
—

/

/

/ /
| ]
| |
\ \

| |
/ ) /
downflip outflux
[(u(n-u)/n]Gu-1

downflip influx
[(u+1)(n-u-1)/n]G,,4

Definition 3.1
Voter Model Master Equation for Constant Clique Size with Uncoupled Cliques

up spin in flux down spin in flux
! !
dG ' u—1\7 [ m—a— N
dtUZGu—1 _(n_U+1)( . )_ + Gu+ _(U—I-'l)( n )__
[ u\9 [ n—u\?
Gy |[(n—u (—) — Gy |(u
-0 (5)] - e @ ()
(1) T up spin out flux T down spin out flux

VOTER MODEL AMES 8/19



COUPLED CLIQUES
MOMENT CLOSURES

Definition 4.1

Moment Closure

The moment closure approximates the coupling between a group and surrounding groups

Definition 4.2

pu(t) = (Kex)

>y Gul((n—u)(3)")

pd(t) = (Kex)

>, Gu(n—u)
Zu GU(U(%)q)

Zu GU(U)

Vioter Model Master Equation for Constant Clique Size and Moment Closure

dG, i u—1\17
i NG i
Gy _(n — u) (B) + pu_

VOTER MODEL AMES

Pu

— G,

GU—I—'I

-(u 1)<n—u—1

o

n—u
n

n

g )
) + Pd

;

Pd

9/19



SOLVING FOR THE STEADY STATE

Definition 5.1

Detailed Balance In equilibrium, each elementary process is in equilibrium with its reverse process.

We know the recursion formula is

C(n—u+1) o+ (55

G, = G,
- ulp + =Y “

So the formula for G, is

Ty (—utt)p+ (“F)]
GU—ZE U[,OI n;u]
Where

VOTER MODEL AMES 10/19



LINEAR RESULTS
LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

Time Evolution of Voter Model AME with N = 100

Time(t)
0.15 — 10
——— 30
— 50
—— 70 |
—— 90

0.10

0.05

# of Up Spins(u)

Occupation Number(G,)

Figure. Time series of numerical integration of
AME with p = 0.0 the distribution collapses two the
two absorbing states

VOTER MODEL AMES 11/19



LINEAR RESULTS
LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

Time Evolution of Voter Model AME with N = 100 AME Steady State, q = 1.0

0.3
Time(t) P
0.15 F — 10 10e-3.0
— 30 5 10e-2.

~ ) 0e-2.0
O — 30 — 10e-1.0
E/ —— 70 R 10e0.0
Pel ———90 o 0.2 10e1.0
£ o010t 3 10€2.0
= §_ 10e3.0
-
(o) c
% S
o 8 0.1
O
O O

0.00 |, . ! | ¥| 00 L = =

0 25 50 75 100

# of Up Spins(u)

Figure. Time series of numerical integration of

0 25 SIO 75 l(l)O
Number of Up Spins(u)

Figure. Steady state distribution for AMES as a

AME with p = 0.0 the distribution collapses two the
two absorbing states

function of p. Coexistence emerges as coupling
Increases

VOTER MODEL AMES 11/19



LINEAR RESULTS
HETEROGENEOUS GROUP SIZES

Larger cliques support coexistence at lower coupling strengths

At (kex) = 0.05, coexistence only occurs at n > 50. At (kex) = 0.1, coexistence occurs above n > 20

AME Stationary state by clique size, (k.,) = 0.05 AME Stationary state by clique size, (k.,) = 0.1

0.0020 |
n n
0.003 | —1 —1
11 — 1
- — 21 - 21
8 31 8 0.0015 F 31
- 41 - — 4
-} -}
P — 31 = ——— 51
- —— 61 - —— 61
O — 71 © 0.0010 — 71
-t -+
© — 81 © ——— 81
o o
S —— 01 - —— 91
) (@]
O 0.001 O
@) O 0.0005 F
0.0000 -,Z

6 215 5'0 7'5 1c'>o 0 2'5 5lo 7'5 1c'>o
# of Up Spins # of Up Spins

VOTER MODEL AMES 12/19



NON LINEAR RESULTS

Conformist nodes(g > 1) create stable minorities

» For g < 1 hipster nodes drive model towards coexistence

» For g > 1 conformist nodes create a stable minority

Non-Linear Steady State, g = 0.5

0.08

0.06

0.04

0.02 r

0.00

Occupation Probability G,

VOTER MODEL AMES

25

50

75

100

0.3

0.2

0.1

0.0
1

Non-Linear Steady State, g = 1.0

Occupation Probability G,

N~

25

50

75

100

0.4 r

03 r

0.2

0.1 F

0.0
1

Non-Linear Steady State, g = 1.5

p

10e-3.0
———10e-2.0
—— 10e-1.0
———10e0.0
———10el.0
10e2.0
———10e3.0

25

50

75

100
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VOTER MODELS
NON-LINEAR

Noisy Non Linear Voter Model”

1. Give each node a random chance to flip,
separate rates for each spin states agp, aj.

2. Total noise level € x ag + a1 £=0.20 £=0.25 £=0.30
. 2 | | [
3. Noise asymmetry level Ae x ag — aj 3 = .
g & a
Steady State Distributions 0=— R ——.—

Ae=0.01 Ae=0.02 Ae=0.03

1. Certain noise levels lead to emergence
unimodal magnetization distribution

2. Others lead to bimodal distribution

4Peralta et al., 2018.

VOTER MODEL AMES 4/19



NON LINEAR RESULTS
PHASE DIAGRAM

Island of Minority Coexistence

» Let's determine the possible states of
the model by plotting the number of
local maxima by parameter values

» For low p, the critical transition of the
original g voter model remains the
same.

» At higher couplings p > 0.01,
consensus states become
impossible. We see a bimodal
distribution where stable minorities
coexist within cliques.

VOTER MODEL AMES

Phase Diagram Number of Local Maxima

3

2.5

1.5

0.5

-2.5

-2

-1.5
Log(rho)

-1

-0.5

3.5

14 /19



CONCLUSION

Conclusions

» Formulated dynamics of non-linear voter model on higher order networks using approximate master
equations

» Increasing coupling between cliques creates coexistence in steady states
» High g combined with a specific range of couplings allows for stable minority coexistence.

Future Work

» Derive an analytical expression for different phases of model.

» Can the higher order effects be seen as a noise term?

» How does heterogeneity in non-linearity affect results - eg. hipster cliques?
» Compare results with results on pairwise network

VOTER MODEL AMES 15/19
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oM. T. Gastner and M. E. J. Newman, "Optimal design of spatial distrioution networks,” Phys. Rev. &, vol, 74, no. 1, p. 016117, Jul. 2006, do


https://doi.org/10.1103/PhysRevE.74.016117

30

OLS:
minimize this square, I

22.9 error only In dependent variable

15 DR S .

minimize this triangle,
error In dependent and Independen
7.5
0 .//‘ ! ’
-7.5
0 3 6

171 J. MV Rayner, "Linear relations In biomechanics: the statistics of scaling functions,” Jourmal of Zoology, vol. 206, no. 3, pp.
415439, 1985, doi 10.1111/].1469-7998,1985 . 1005668.x
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How do Empirical Facllities Scale”

FACILITY TYRPE
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VVnat Are evolutionary

Algonthms”

Class of optimization
algorthms Inspired oy
piological evolution
Algorithms of last resort
only useful when there Is no
gradient and no information
aoout the fitness landscape
Solution to a problem are
Jenomes
| 0ss function Is therr fitness
Solutions are evolved and
crossired to identity better
solutions

—valuation Selection
\utation (Crossover

==



| H B
Mutation - Crossover Q

Mutation: Randomly relocate a subset of the Crossover: Divide the facllity at N points, swap

faclities
l>

»




Simulated Annealing "

Algorithm 1 Simulated Annealing Without Perturbation

1: procedure SIMULATEDANNEALING(Tmax, Tmin, «)
2 Initialize solution g

3 Evaluate Fitness of solution f (F(g))
4 T « Tmax

5: for i < 1to Generation do
6

7

8

9

»  Randomly mutate a tacllity

g’ < Mutate(q’)
AE « F(¢') - F(g)

if AE <0 then » I the mutated faciity has lower fitness

: g & g’ | | . F — F’
10: else accept it with a probanility exp( = )
i; f : :;: ;On?(%{ f)) - Where T Is the temperature, decreases
13: if r < p then | Dy a factor of alpha every generation
14: g < g’
15: end if
16: end if
17: T «— aT
18: end for
19: return g

20: end procedure




u + A Evolutionary Strategy

Algorithm 2 y + A Evolutionary Strategy Without Perturbation

1: procedure EVOLUTIONARY STRATEGY(mu, lambda)

2 P « Initialize population of A individuals

: BeSt, i , e  Handomly mutate all faciities In

- T LI e o the population of A 1acilities

5: e,

: ek i o + Select p of the best facilties witr

7 g’ < Mutate(g) |

_ fi « AssessFitness(g’) fournament selection |

, »  Pairs of head-to-head BB g

9 Q « (g, f1) end for et ey = ;
P—PUQ cvaluatlons WItN replacermer D E [X] X
P « select u best individuals from P

Best «— SelectBestIndividual(P)
end for
return Best
end procedure




Q1: Can evolutionary algorithms identity an ideal facility placement - Yes
Genome Length: 50

»  Simulated annealing outperforms any other -0.8 R
metric 1.0 / e m—
*  More variation between algorithms — scaling s
near to optimal 7
- Near optimal scaling has ben discovereo g7 |
-1.6
Evolved Facility Scaling -1.8
reduced major axis 20
—— empirical

—— alpha=0.723,R"2=0.2 :
o I Genome Length: 500
- alpha=2/3 -0.2
- —
9
S 8
a
= 2
LE 7 g -04
3 L
° 0.5
| Rank assignment
0 — Simulated annealing
-0.6 Tournament selection
4
9.5 10.0 10.5 11.0 1.5 12.0 12.5 13.0 0.0 0.2 0.4 0.6 0.8 1.0

Log Population Density

% Algorithm Run



Changes In Supply:
Natural Disasters

Targeted Removal
1. Select a random facllity and remove it
Radius Based Removal

1. Draw a set of catastropne sites from a speciic
distrioution

2 Hnd 4l the facllities within a distance L of a
catastrophe site

3. Hemove them

4. Calculate the Robustness

Soousiness: How much does the average travel
distance increase when facilities are removed”/

perturbation site
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—mpirical Flood Distrioution —areto Distribution

Calgary

L |
W"l = o Vancouver
T
Lake
T - H ll Seattle Superior

]

£ gt

) .,
L H
> 1 :!: "'
=N RREEY y
| o | I I

llll | o

{ v Toronto

Chicago Detroit

- | [
] [ | B d T
ﬁf" R U N ITE!D
A |
BN T Denver ¢ 1 A\TIELS
"IL I l_ = Sap
i?’ 7 T | Francisco

] Los Angeles
R o Hurricane Risk )
Il [ ] MoRisk
[ LowRisk
[ Medium Risk
I +ion Risk
I very High Risk

[T

Il
o]

L,

Monterrey~

Gulf of MEXICO

Moviri i
MEXICO . Streetilap contricutors, and the GIS i SUDA
ri, , Garmin, {c) CpenStreethap contributors, a e us er community Guadalajara




X. | Dbest
New Selection  mm :
Mult-Objective == I.
—revious selection mechanism: tournament z
selection on indwviduals after perturoation :)

MUulti-objective selection — explicitly Incoroorate
fitness and ropustness

worst

[_x

NOﬂ—deiﬂEﬂ@d ngng raﬁk aSSigﬁm@ﬂt Fitness v Fitness Diff Rank Assignment 50 Facilities f]
* Individual | dominates inaividual § If it Is both more 0 oo g Lo s e
fit and more robust 5 ‘:{@.
»  Pareto-front of rank ki all individuals not . AR
dominated by an individual of a lower rank L{,’-?gen -
= ** 20
We cdll p + A algorthm with single ocojective g : . 10
tournament selection — toumnament selection s g
We call p + A algorthm with mutti-objective rank o *
assignment — rank assignment
=20

fithess



How do we add perturbation to the

algorithm?

Algorithm 3 Simulated Annealing With Perturbation

1:
2
3
1
-1
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

procedure SIMULATEDANNEALING(Tmax, Tmin, «)
Initialize solution g
Evaluate Fitness of solution f (F(g))
I < Tinax
for i « 1to Generation do
g’ «— Mutate(q")
g"" « Perturb(qg’)
AE « F(g") - F(g)
if AE < 0 then
g<9g
else
p <« exp(—AE/T)

r « random(0,1)
if r < p then
g<9g

end if
end if
T «— aT
end for
return g
end procedure

ASSESS fItNess
of Individual
after

— perturpation
- Implicitly
select for robust
solutions

Algorithm 4 y + A Evolutionary Strategy With Perturbation

1: procedure EVOLUTIONARY STRATEGY(mu, lambda)

2 P « Initialize population of A individuals
3 Best «— O

4: for i « 1to Generation do

5 Q — {}

6 for each individual s in S do

7 g’ « Mutate(g)

8; fi1 « AssessFitness(g’)

9: g'" «Perturb(g’)

10: fa < AssessFitness(g”’)

11: R« fo-fi > calculate the robustness
12: Q (" f1R)

13: end for

14: P« PU Q

15: P « select u best individuals from P
16: Best « SelectBestIndividual(P)

17: end for

18: return Best

19: end procedure




Q2: Can we evolve a robust layout of
facilities - Yes!

Genome Length: 50 Genome Length: 500

oimulated annealing perform
wel achieves highest absolute &

fitness /
» But simulated annealing and 0|

tournament selection fall to
achieve INcrease N robustness
Only rank assignment

ncrease robustness VY AN YN R N ARWaA

Fithess

—

Genome Length: 50 Genome Length: 500

Robu
Rob

% Algorithm Run % Algorithm Run



Travel Distance Comparison

Proportion

Proportion

0.0

0.0

\

\\
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0.6
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0.8

0.8

- Empirical

1.0

1.0

Tournament Selection

1

1.2
1e6

1.2
1e6

—mpircal distrioution s
much more neavy talled

outperforms tourmament
selection for for radius
Dased remova
\Vice-versa for targetec
removal

s targeted removal harder
than radius pased



Robustness Comparison

Radius Based Removal Targeted Removal

— - ——

Hospital

«  Hank assignment more ropust
than empirical layout
» Volved distributions are much

’@SS h@aw ta”@d Rank assignment _‘ —"

Derorms

B Hospital
Bl Rank assignment
[ Tournament selection

0OOMyY

Tournament selection

-5 -4 -3 -2 -1 0 -0.04 -0.03 -0.02 -0.01 0.00
Robustness Robustness



Voter Model



CONCLUSION
NUMERICAL AND SIMULATION

Validating with Simulation

» AME distributions and simulation match for
small couplings .

» Simulation and AME diverge for large
couplings ({(kex) = 10.0)

» Discrepancy is possible due to finite size
effects

VOTER MODEL AMES
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CONCLUSION
HETEROGENOUS GROUPS

Initial Condition

Groups across scale .
> Let’s relax the assumption of fixed clique size. |

How do heterogenous groups interacting across
scales affect the steady-state dynamics and the Steady state

possibility of coexistence? .
» G, n: the occupation number for groups of size )
n with u up spins.

# of up spins(u)

(n)

Numb

lig

— 0.025
&)
—
0.020 ¥
3
c
o
0015 =
©
Q
3
v
O
o
0.010
0.005
0
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