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How does Inequality Emerge in Spatial and 
Social Systems? 

Emergence of spatial inequality Emergence of inequality through 
political polarization 



Part 1: 
The Geography of Inequality



Spatial Inequality

• Spatial Inequality: social Inequality the arises from 
the unequal distribution of resources 

• Social Deserts: spatial regions with limited access to 
socially important goods and services  
• Food Deserts: Low access to nutritious food 

affects 39.5 million Americans[1]. Strong 
correlation between access to nutritious food and 
health outcomes  

• Social deserts for books [2], transit [3] and other 
socially important goods  

[1]M. V. Ploeg et al., “Access to Affordable and Nutritious Food:  Measuring and Understanding Food  Deserts and Their Consequences,” 
[2] S. B. Neuman and N. Moland, “Book Deserts: The Consequences of Income Segregation on Children’s Access to Print,” Urban Education, vol. 54, no. 1, pp. 126–147, Jan. 2019 
[3]J. Jiao and M. Dillivan, “Transit Deserts: The Gap between Demand and Supply,” JPT, vol. 16, no. 3, pp. 23–39, Sep. 2013

Source: Food Environment Atlas, U.S. Department of Agriculture, Economic Research Service 



Changing systems develop 
inequality

• Spatial resources are affected by changes in demand 
and changes in supply.  

• Changes in demand 
• Century long rural decline reversed by COVID 
• Climate/disaster induced displacement[1] will 

displace 250 million people by 2050 
• Changes in supply:  
• Natural disasters.  
• Hurricane Katrina and Sandy[2] 

• Policy induced changes in supply 
• Dobbs and Abortion Access 

[1] Katharine J. Mach and A. R. Siders, “Reframing Strategic, Managed Retreat for Transformative Climate Adaptation”, Science 372, no. 6548 (2021): 1294-1299 
[2] Mary W. Chaffee, Neill S. Oster, and Associate Editors. “The Role of Hospitals in Disaster”. en. In: Disaster Medicine (2006). Publisher: Elsevier 



Policy Induced Changes: Abortion Clinics

• While in 2008 the median distance traveled to an abortion 
clinic was only 15 miles, some women had to travel much 
farther. 17% of woman needed to travel at least 50 miles 
to the nearest clinics[3] 

• In Texas and Louisiana: 
• Pre Dobbs median commute: 27 mins 
• Post Dobbs median commute: 6 hours

[3] J. M. Lindo, C. K. Myers, A. Schlosser, and S. Cunningham, “How Far Is Too Far? New Evidence on Abortion Clinic Closures, Access, and Abortions,” J. Human Resources, vol. 55, no. 4, pp. 
1137–1160, Oct. 2020

New York Times: Where Abortion Access Would Decline if Roe V. Wade Were Overturned(May 2021)

Predicted Decline In Legal Abortions



Research Question: Can we map the geography of inequality? 
What can optimal facility allocation problems tell us about the misallocation of 

facilities



Optimal Facility Allocation



• Given a population density  and a bounded 
region 

ρ(r)
Ω

Ω

• A resource can be allocated over , specified by  Ω D(r)

D(r)
Resource Density

• If resources as discrete set of facilities. Imagine p 
facilities : {r1 . . . rp}

D(r) =
p

∑
i=1

δ(r − ri)
ri

Facility

Formalism: How do we allocate spatial 
resources optimally?

• The Problem: Find a resource density   which 
extremizes some objective functional   

D(r)
F[D(r)]

ρ(r)
Population Density



r|r − ri|

ri
Facility

• Assume each person goes to nearest facility. 
Area of coverage is the Voronoi cell .  Vi

P Median Problem 

We want to find the set of  facilities that extremes the following function:  p

F(r1, r2 . . . rp) =
p

∑
i=1

∫Vi

drρ(r) |r − ri |
β

Objective function is population weighted average distance to nearest facility to some power 

|r − ri| r

Vi

Voronoi Cell



r|r − ri|

• How do we solve this? - Approximations! 
• When the number of facilities  is sufficiently large, the population of each cell is constant:  p

|r − ri | ≈ ⟨ |r − ri |⟩

s(r) = ∫Vi

dr

Returns area of cell that  is in  r

 is a shape factor of   g 𝒪(1)

D(r) =
1

s(r)

Average distance to the nearest facility 
to some power β Constraint:  facilitiesp

F = ∫Ω
drgβρ(r)[s(r)]β/2 + λ(∫Ω

dr
s(r)

− p)

D(r) =
1

s(r)
= ∝ ρ(r)

2
β + 2

when the above power-law relation exists between the facility density  and the 
population density  

D(r)
ρ(r)

F(r1, r2 . . . rp) =
p

∑
i=1

∫Vi

drρ(r) |r − ri |
β

Objective function is population weighted average distance to nearest facility to some power 

= g[s(r)1/2]

When is our objective function is extremized  (δF = 0)



F(r1, r2 . . . rp) =
p

∑
i=1

∫Vi

drρ(r) |r − ri |
β

Objective function is population weighted average distance to nearest facility to some power D(r) =
1

s(r)
= ∝ ρ(r)

2
β + 2

When our objective function is extremized when the above power-law relation exists between the facility 
density  and the population density  D(r) ρ(r)

What does the objective function represent? 
 
  is minimized ( ) for F δ2F > 0 β > 0  is maximized ( ) for F δ2F < 0 β ∈ (−2,0)

F(r1, r2 . . . rp) =
p

∑
i=1

∫Vi

drρ(r)⟨ |r − ri |⟩
If β = 1

Average distance to 
nearest facility

F(r1, r2 . . . rp) =
p

∑
i=1

∫Vi

drρ(r)

If β = 0

Total cell 
population

When  we maximize the total cell populationβ = 0

D(r) ∝ ρ(r) 2
0 + 2 = ρ(r)1

An optimal facility density  should scale as the population  D(r) ρ(r)

When  we minimize the average distance to the nearest facilityβ = 1

D(r) ∝ ρ(r) 2
1 + 2 = ρ(r)2

3

An optimal facility density  should scale as the population  to the 2/3D(r) ρ(r)

 minimizes social opportunity cost we should see this for public 
facilities

β = 1  maximizes profit we should see this for commercial facilitiesβ = 0

[4] J. I. Park and B. J. Kim, “Generalized p-median problem for the optimal distribution of facilities,” J. Korean Phys. Soc., vol. 80, no. 4, pp. 352–358, Feb. 2022, doi: 10.1007/s40042-021-00361-2. 
[5] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim, “Scaling laws between population and facility densities,” Proceedings of the National Academy of Sciences, vol. 106, no. 34, pp. 14236–14240, Aug. 2009, 
doi: 10.1073/pnas.0901898106. 

https://doi.org/10.1007/s40042-021-00361-2
https://doi.org/10.1073/pnas.0901898106


Quantifying Facility Misallocation



D =
1

cell area

ρ =
num of people

area

2. For each cell, calculate population 
density,  and facility density ρ D

1: Create Voronoi Cells based on facility 
placements

3. Fit data to a Reduced Major Axis(RMA) 
regression[7], slope is scaling exponent

)log(𝜌

lo
g(

D
)



Facility Data Scaling

Scaling for 
Schools: 
0.76 

Public facilities should 
have an exponent 
close to 2/3 

Schools

Scaling for 
Banks: 0.92 

Banks 

Private facilities 
should have an 
exponent close to 1 



Residuals: Deserts and Oases 

Social 
Desert

Social 
Oasis

Social 
Oasis

Social 
Deserts

Abortion Clinics



Social 
Deserts

Abortion clinics access is not simply partisan

Social 
Oases

Poor access in 
suburbs of liberal 

cities



Mapping Inequality Abortion Clinics 

RM
A Residual

More access than expected in western states 

Poor access in the south



CHANGES IN DEMAND 
AND SUPPLY



Changes in Demand:  
Post Office Scaling

Post office scaling exponent has dropped from 0.8 to 0.6 
commercial to public transition 



Pre Dobbs Legal StatusPost Dobbs Legal Status

Changes in Supply:  
Abortion Clinics



Changes in Supply:  
Abortion Clinics
How much does Dobbs change the travel distance to the 
nearest abortion clinic? 
Compare empirical layout to optimal layout

Pre Dobbs Optimal Layout

Post Dobbs Optimal Layout

Facility Distance CCDF 



Fragility 
• Fragility:  The fragility of facility i is the decrease in 

objective function caused by removing facility i from 
the genome 

• Hospitals:  
• Boise ID, Buffalo NY, St George UT, Bangor ME 

• Abortion Clinics:  
• Memphis TN, Little Rock AK, Jackson MI, 

Corpus Cristi TX, Las Vegas NV and Fargo, ND 
• Conclusion:  
• Hospitals which are in urban centers in otherwise 

rural areas are fragile  
• Clinics which are in southern cities are the most 

fragile 

Hospitals

Abortion Clinics



Conclusion

• Scaling relationships derived from optimal facility 
placement can be used to identify social deserts 

and social oases  
• Changes in demand are detectable through 

scaling exponent changes 
• Social deserts in aboriton clinic access don not 

fall along simply partisan lines



Part 2: 
The Emergence of Polarization
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Peter Dodds Chris Danforth Laurent Hébert-Dufresne Nick Cheney 
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Backup Slides



Facility Robustness 



Facilities partition space equally when space is is distorted to equalize the 
appropriate exponent

 Cartogram equalizing 𝜌

Public Facilities with scaling 2/3

 Cartogram equalizing 𝜌 2
3

[6]M. T. Gastner and M. E. J. Newman, “Optimal design of spatial distribution networks,” Phys. Rev. E, vol. 74, no. 1, p. 016117, Jul. 2006, doi: 10.1103/PhysRevE.74.016117. 

[1]
PLOTS FROM 1 

https://doi.org/10.1103/PhysRevE.74.016117
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OLS:  
minimize this square,  

error only in dependent variable   

RMA:  
minimize this triangle,  

error in dependent and independent  

[7] J. M. V. Rayner, “Linear relations in biomechanics: the statistics of scaling functions,” Journal of Zoology, vol. 206, no. 3, pp. 
415–439, 1985, doi: 10.1111/j.1469-7998.1985.tb05668.x

https://doi.org/10.1111/j.1469-7998.1985.tb05668.x
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How do Empirical Facilities Scale? 
More Commercial 

More Public 



What Are Evolutionary 
Algorithms? 

Selection 

Crossover Mutation

Evaluation 
• Class of optimization 

algorithms inspired by 
biological evolution 

• Algorithms of last resort 
• only useful when there is no 

gradient and no information 
about the fitness landscape 

• Solution to a problem are 
genomes 

• Loss function is their fitness 
• Solutions are evolved and 

crossbred to identify better 
solutions 



Mutation

Mutation: Randomly relocate a subset of the 
facilities 

Crossover
Crossover: Divide the facility at N points, swap 



Simulated Annealing 

• Randomly mutate a facility 
• If the mutated facility has higher fitness, 

accept it.  
• If the mutated facility has lower fitness 

accept it with a probability  
• Where  is the temperature, decreases 

by a factor of alpha every generation 

exp(
F  − F′￼

T
)

T



 Evolutionary Strategy 𝜇 + 𝜆

• Randomly mutate all facilities in 
the population  of  facilities 

• Select  of the best facilities with 
tournament selection 
• Pairs of head-to-head 

evaluations with replacement  

λ

 μ



Q1: Can evolutionary algorithms identity an ideal facility placement – Yes  
 

• Simulated annealing outperforms any other 
metric  

• More variation between algorithms – scaling 
near to optimal  
• Near optimal scaling has ben discovered



• Targeted Removal 
1. Select a random facility and remove it 

• Radius Based Removal 
1. Draw a set of catastrophe sites from a specific 

distribution 
2. Find all the facilities within a distance L of a 

catastrophe site 
3. Remove them  
4. Calculate the Robustness 

Robustness: How much does the average travel 
distance increase when facilities are removed?  

perturbation site 

L

Changes in Supply:  
Natural Disasters



Catastrophe 
Distribution

•Two choices of  
• Uniform  
• Pareto Distribution 

D(r)

Empirical Flood Distribution Pareto Distribution



New Selection : 
Multi-Objective  

• Previous selection mechanism: tournament 
selection on individuals after perturbation 

• Multi-objective selection – explicitly incorporate 
fitness and robustness  

• Non-dominated sorting rank assignment 
• Individual i dominates individual j if it is both more 

fit and more robust  
• Pareto-front of rank k:  all individuals not 

dominated by an individual of a lower rank 

• We call  algorithm with single objective 
tournament selection – tournament selection 

• We call  algorithm with multi-objective rank 
assignment – rank assignment 

μ + λ

μ + λ

pareto fronts



How do we add perturbation to the 
algorithm? 

Assess fitness 
of individual 
after 
perturbation 
- Implicitly 
select for robust 
solutions



Q2: Can we evolve a robust layout of 
facilities – Yes! 

• Simulated annealing perform 
well achieves highest absolute 
fitness 

• But simulated annealing and 
tournament selection fail to 
achieve increase in robustness  
• Only rank assignment 

increase robustness 



Travel Distance Comparison

• Empirical distribution is 
much more heavy tailed 

• rank assignment 
outperforms tournament 
selection for for radius 
based removal 

• Vice-versa for targeted 
removal 

• Is targeted removal harder 
than radius based  



Robustness Comparison 

• Rank assignment more robust 
than empirical layout 

•  Evolved distributions are much 
less heavy tailed 

• Tournament selection performs 
poorly



Voter Model 








