

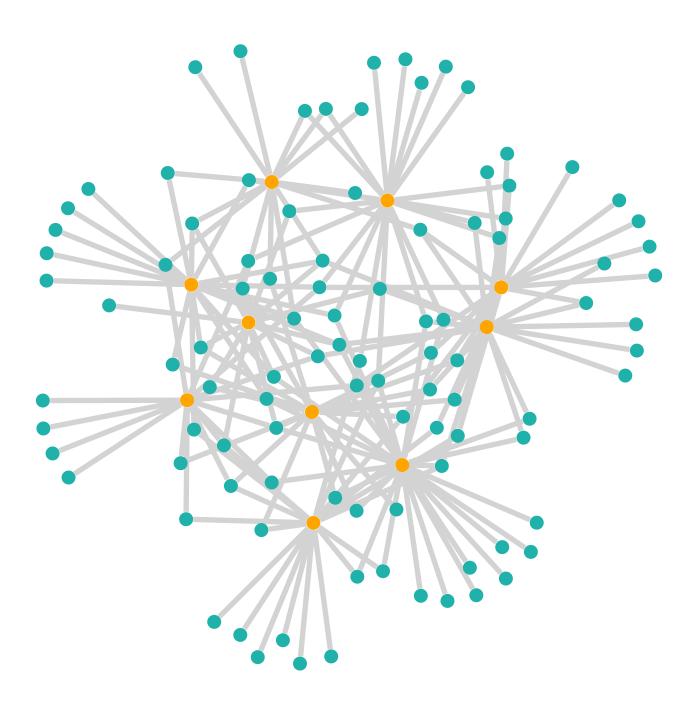
Modeling the Origins of Inequality

Will Thompson 10/31/23

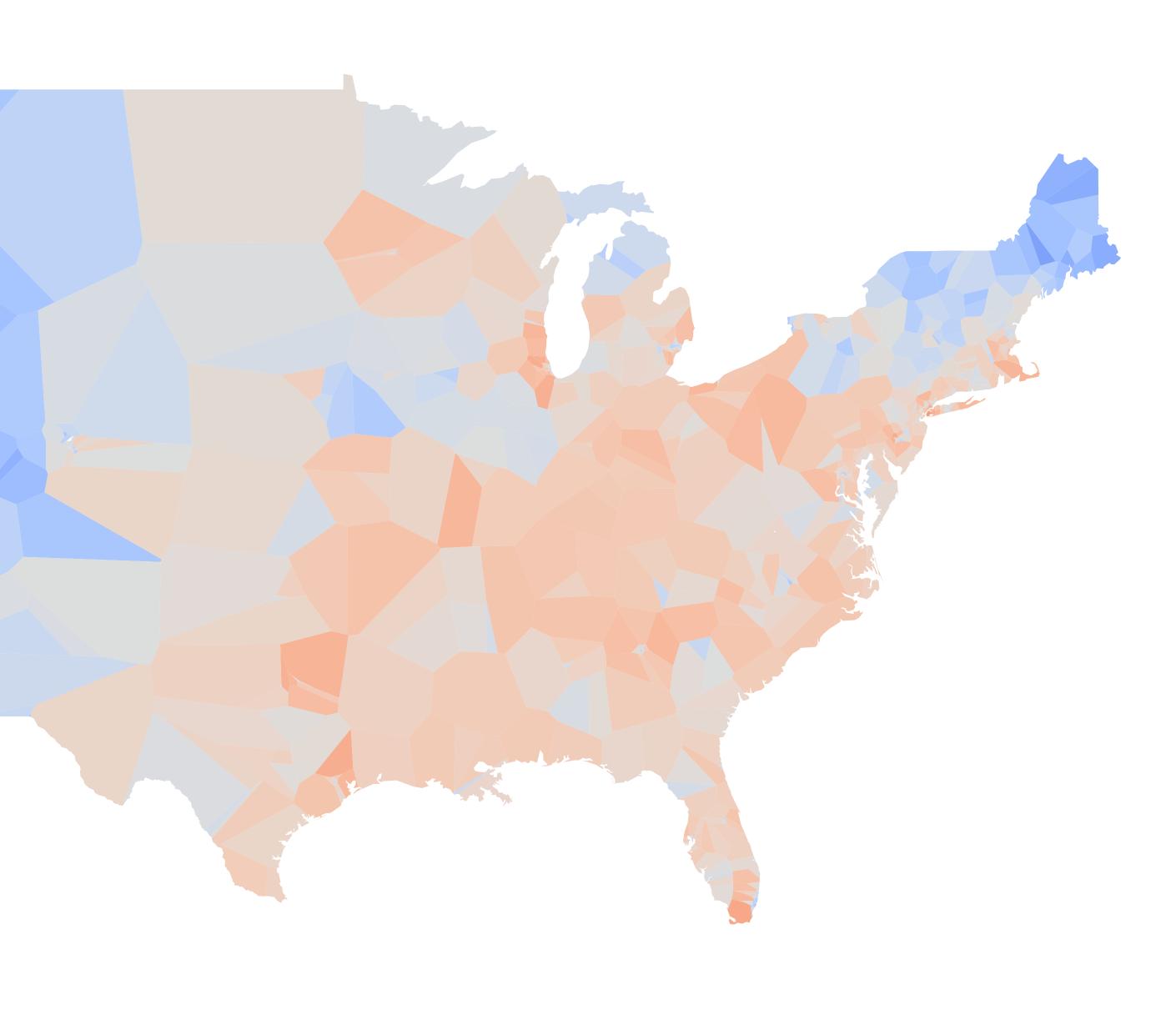
How does Inequality Emerge in Spatial and Social Systems?

Emergence of spatial inequality

Emergence of inequality through political polarization

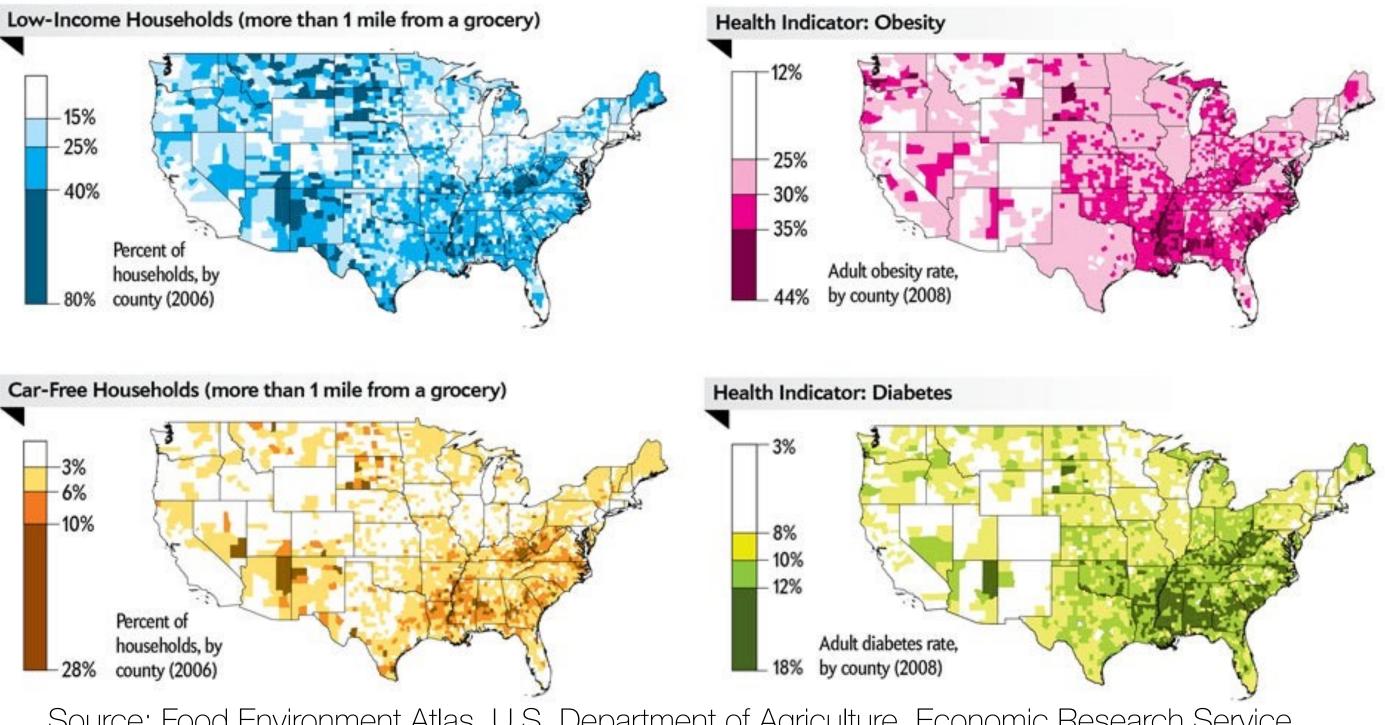


Part 1: The Geography of Inequality



Spatial Inequality

- **Spatial Inequality:** social Inequality the arises from the unequal distribution of resources
- Social Deserts: spatial regions with limited access to socially important goods and services
 - Food Deserts: Low access to nutritious food affects 39,5 million Americans[1], Strong correlation between access to nutritious food and health outcomes
 - Social deserts for books [2], transit [3] and other socially important goods



Source: Food Environment Atlas, U.S. Department of Agriculture, Economic Research Service

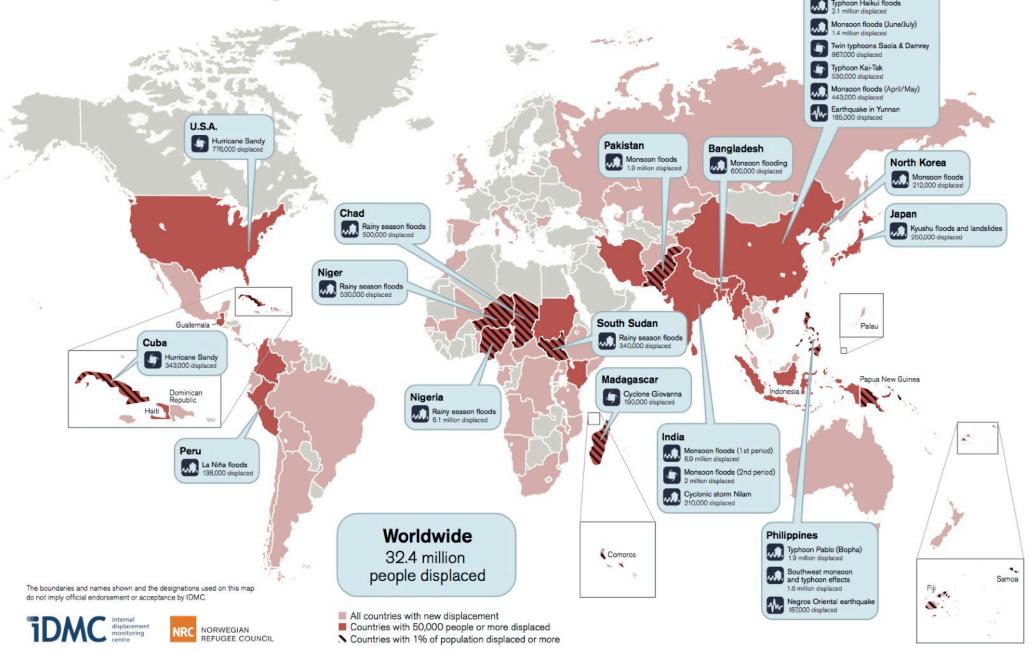
Changing systems develop inequality

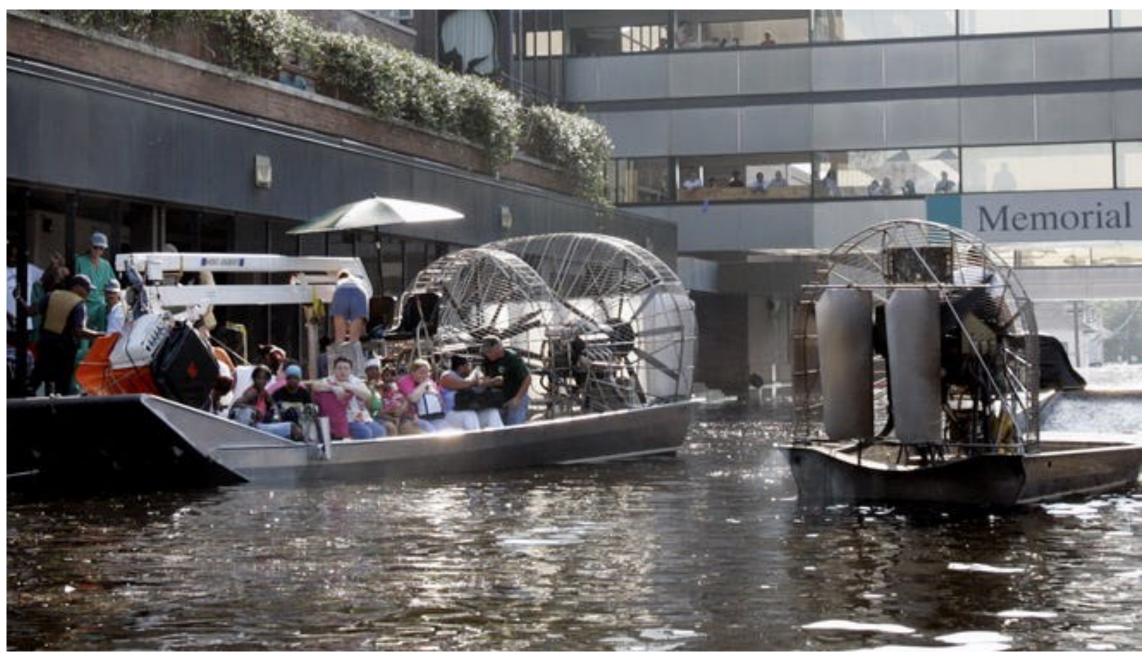
- Spatial resources are affected by changes in demand and changes in supply.
- **Changes in demand**
 - Century long rural decline reversed by COVID.
 - Climate/disaster induced displacement[1] will • displace 250 million people by 2050

Changes in supply:

- Natural disasters,
 - Hurricane Katrina and Sandy[2]
- Policy induced changes in supply
 - Dobbs and Abortion Access

Disaster-induced displacement worldwide in 2012

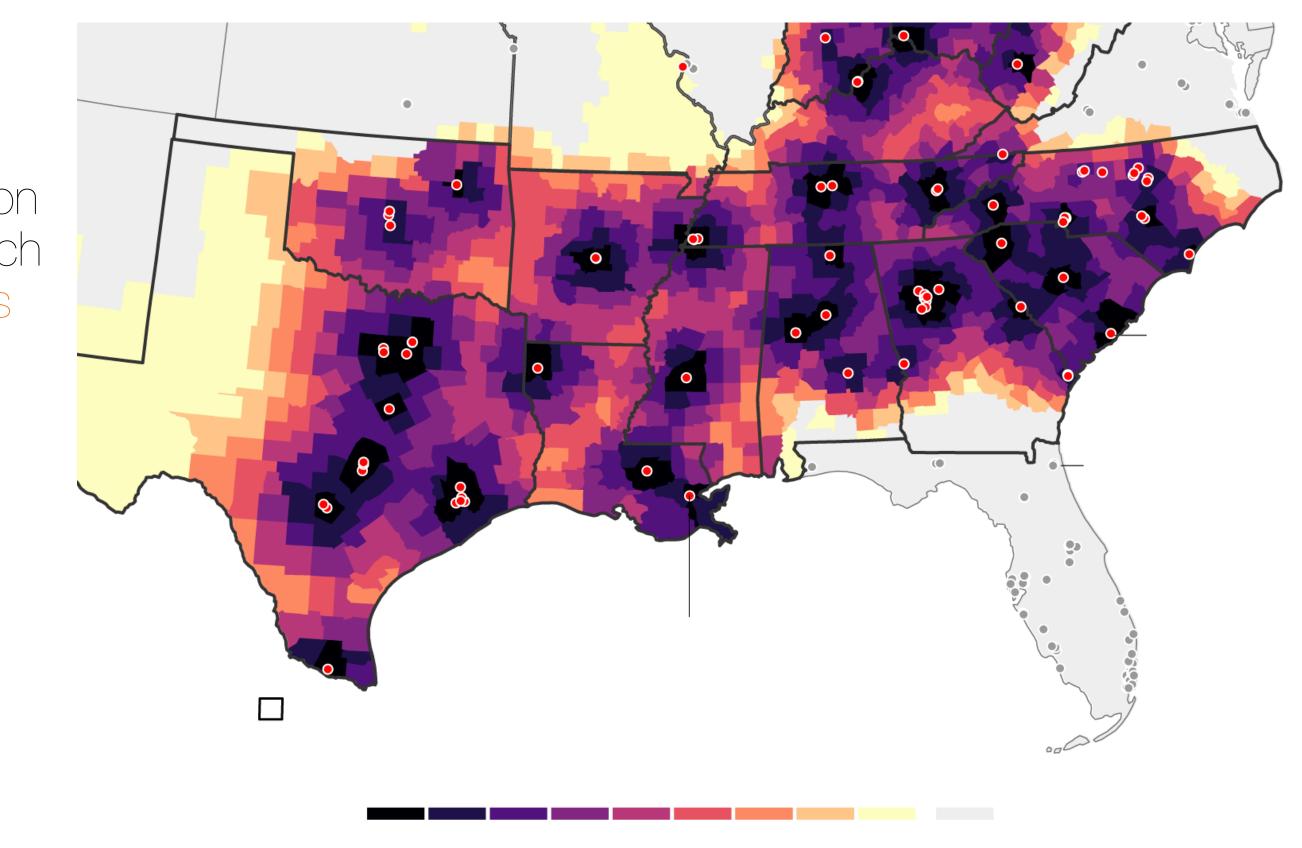




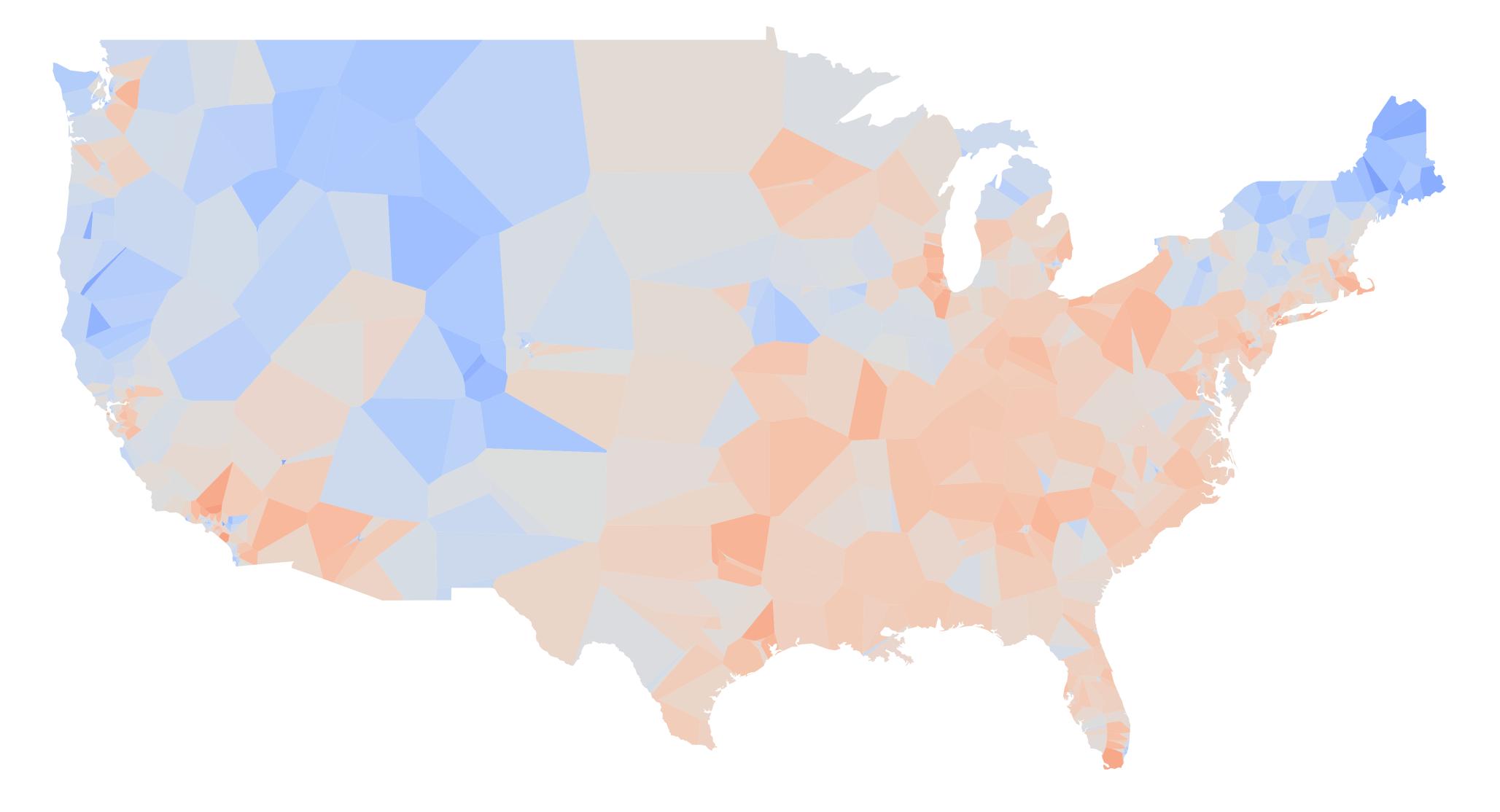
Policy Induced Changes: Abortion Clinics

- While in 2008 the median distance traveled to an abortion clinic was only 15 miles, some women had to travel much farther, 17% of woman needed to travel at least 50 miles to the nearest clinics[3]
- In Texas and Louisiana;
 - Pre Dobbs median commute: 27 mins
 - Post Dobbs median commute: 6 hours

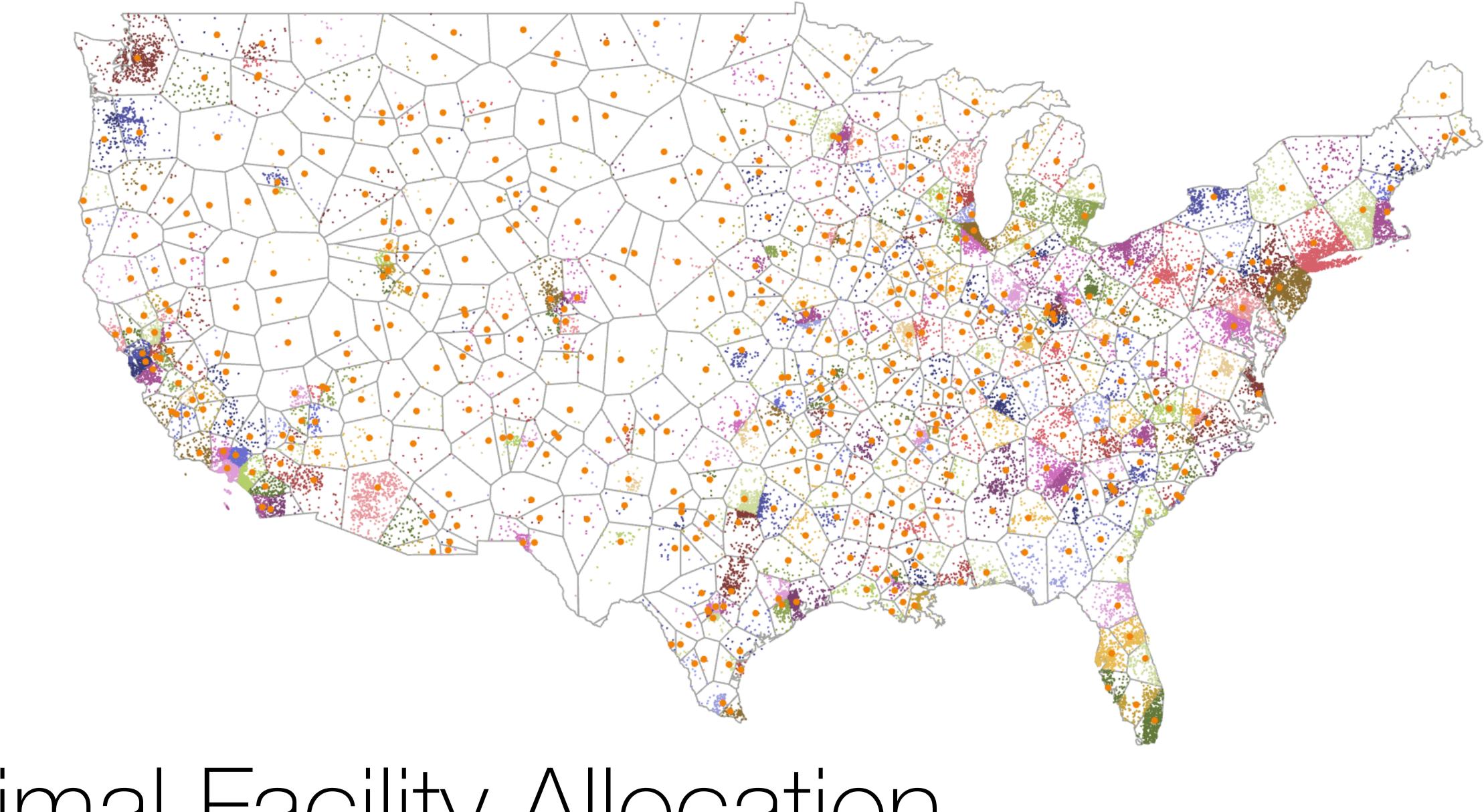
Predicted Decline In Legal Abortions



New York Times: Where Abortion Access Would Decline if Roe V. Wade Were Overturned(May 2021)



Research Question: Can we map the geography of inequality? What can optimal facility allocation problems tell us about the misallocation of facilities



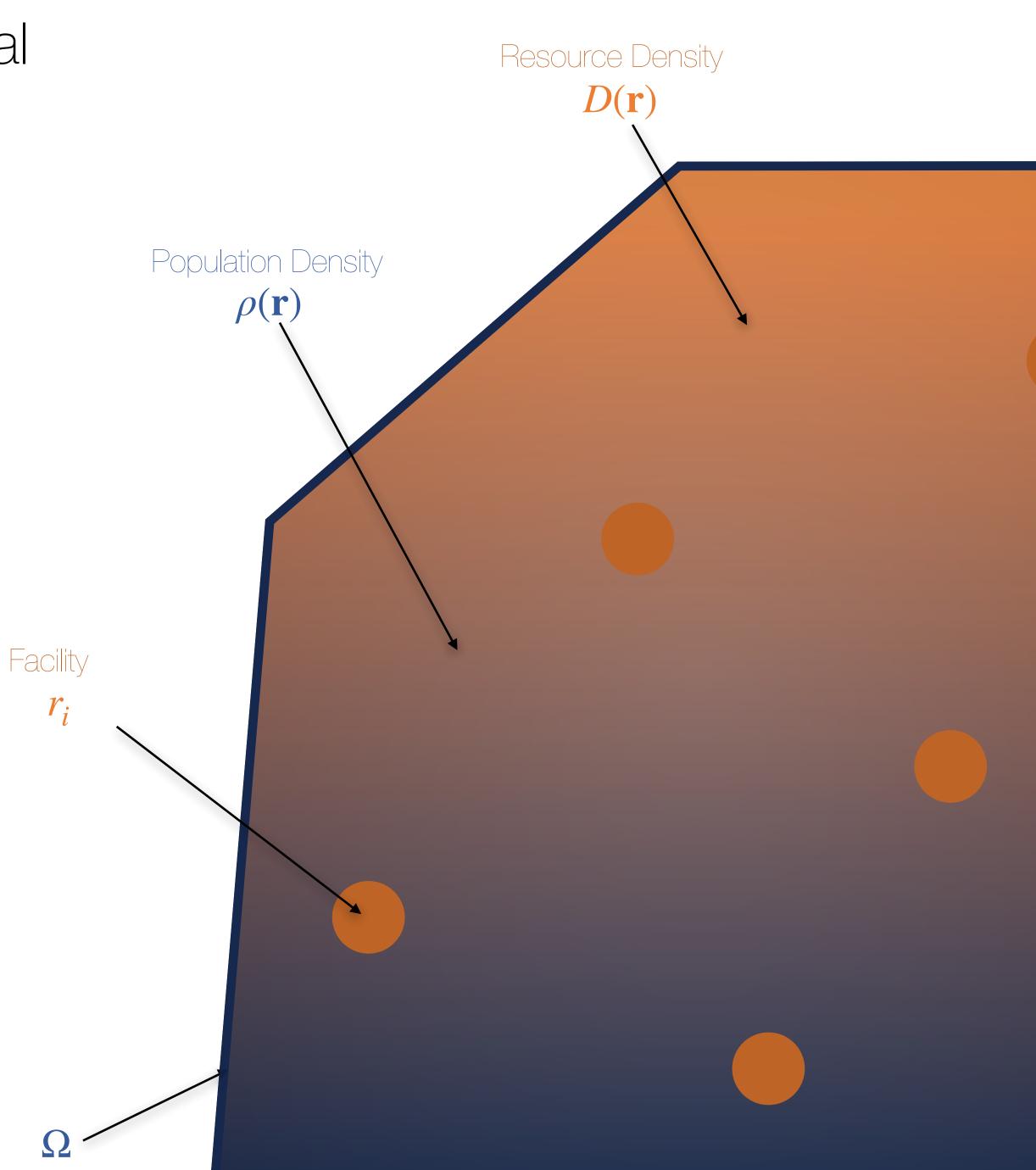
Optimal Facility Allocation

Formalism: How do we allocate spatial resources optimally?

- Given a population density $\rho(r)$ and a bounded region Ω
- A resource can be allocated over Ω , specified by $D(\mathbf{r})$
- If resources as discrete set of facilities. Imagine p facilities $\{r_1 \dots r_p\}$:

$$D(\mathbf{r}) = \sum_{i=1}^{p} \delta(\mathbf{r} - \mathbf{r}_{i})$$

- The Problem: Find a resource density $D(\mathbf{r})$ which extremizes some objective functional $F[D(\mathbf{r})]$



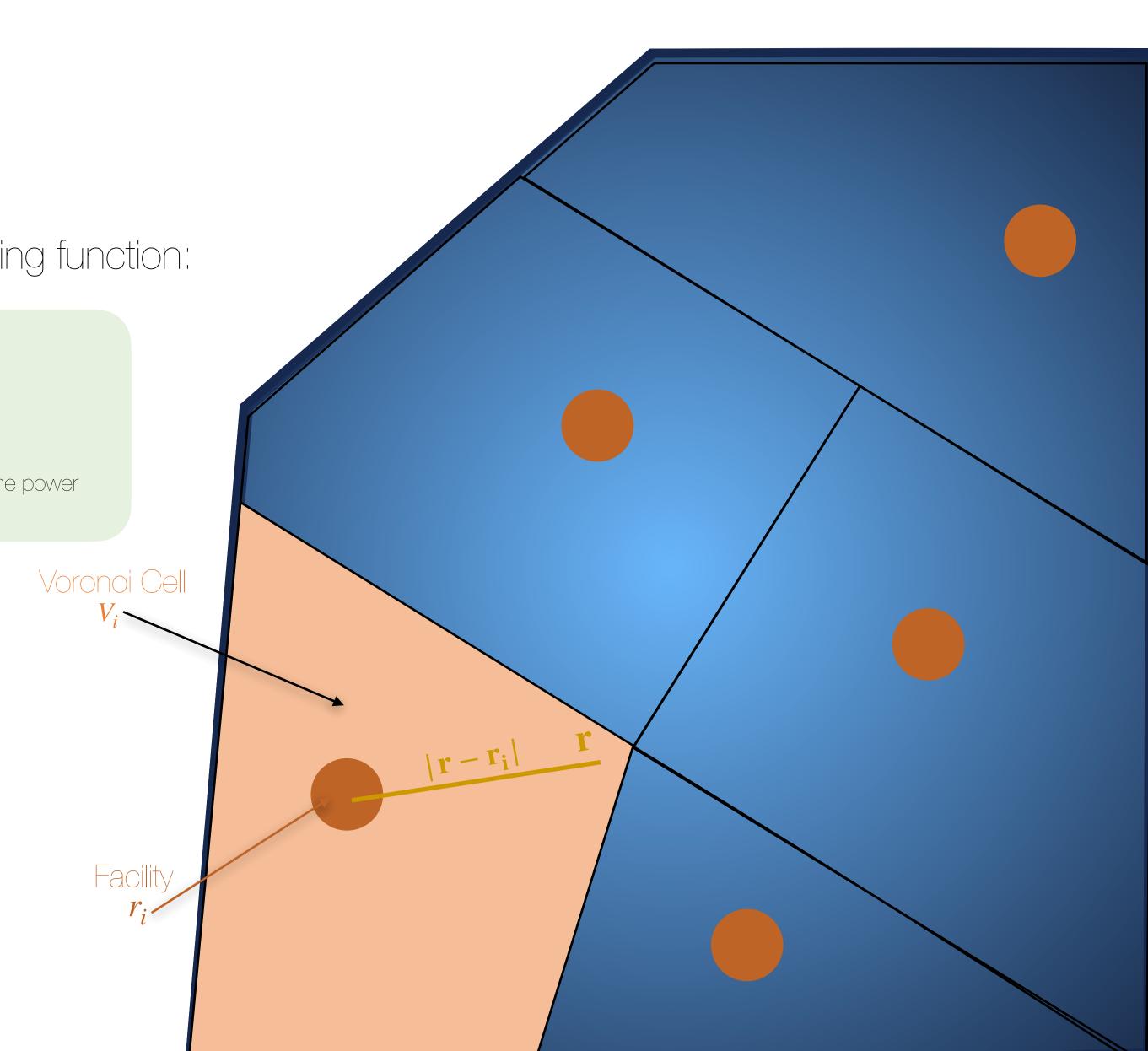
• Assume each person goes to nearest facility. Area of coverage is the Voronoi cell V_i .

P Median Problem

We want to find the set of p facilities that extremes the following function:

$$F(\mathbf{r}_1, \mathbf{r}_2 \dots \mathbf{r}_p) = \sum_{i=1}^p \int_{V_i} d\mathbf{r} \rho(\mathbf{r}) |\mathbf{r} - \mathbf{r}_i|^{\beta}$$

Objective function is **population weighted average distance to nearest facility** to some power



$$F(\mathbf{r}_1, \mathbf{r}_2 \dots \mathbf{r}_p) = \sum_{i=1}^p \int_{V_i} d\mathbf{r} \rho(\mathbf{r}) |\mathbf{r} - \mathbf{r}_i|^{\beta}$$

Objective function is **population weighted average distance to nearest facility** to some power

- How do we solve this? Approximations!
- When the number of facilities p is sufficiently large, the population of each cell is constant:

$$|\mathbf{r} - \mathbf{r}_{\mathbf{i}}| \approx \langle |\mathbf{r} - \mathbf{r}_{\mathbf{i}}| \rangle = g[s(\mathbf{r})^{1/2}]$$

$$F = \int_{\Omega} d\mathbf{r} g^{\beta} \rho(\mathbf{r})[s(\mathbf{r})]^{\beta/2} + \lambda \left(\int_{\Omega} \frac{d\mathbf{r}}{s(\mathbf{r})} - p\right)$$

$$F = \int_{\Omega} d\mathbf{r} g^{\beta} \rho(\mathbf{r})[s(\mathbf{r})]^{\beta/2} + \lambda \left(\int_{\Omega} \frac{d\mathbf{r}}{s(\mathbf{r})} - p\right)$$

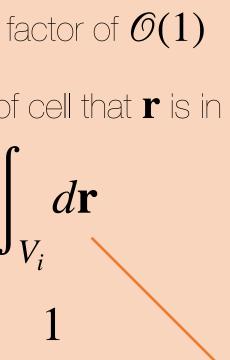
$$S(\mathbf{r}) = \int_{V_{i}} d\mathbf{r}$$

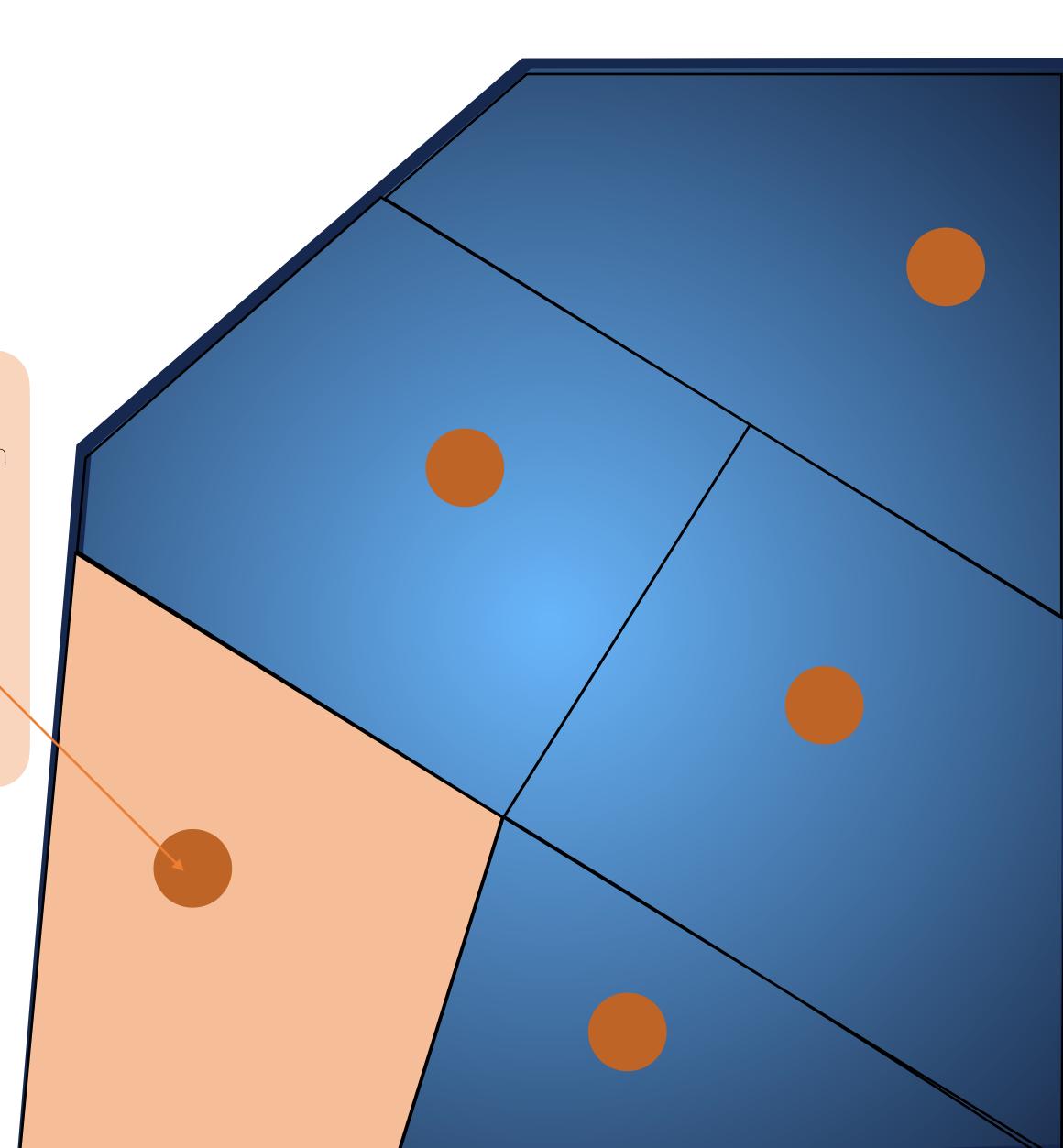
$$S(\mathbf{r}) = \int_{V_{i}} d\mathbf{r}$$

$$D(\mathbf{r}) = \frac{1}{s(\mathbf{r})}$$

when the above **power-law relation** exists between the **facility density** $D(\mathbf{r})$ and the population density $\rho(\mathbf{r})$

$$D(\mathbf{r}) = \frac{1}{s(\mathbf{r})} = \propto \rho(\mathbf{r})^{\frac{2}{\beta+2}}$$





Objective function is population weighted average distance to nearest facility to some power

$$F(\mathbf{r}_1, \mathbf{r}_2 \dots \mathbf{r}_p) = \sum_{i=1}^p \int_{V_i} d\mathbf{r} \rho(\mathbf{r}) |\mathbf{r} - \mathbf{r}_i|^{\beta}$$

$$D(\mathbf{r}) =$$

When our objective function is extremized when the above **power-law relation** exists between the **facility** density $D(\mathbf{r})$ and the **population density** $\rho(\mathbf{r})$

What does the objective function represent?

$$F \text{ is minimized } (\delta^2 F > 0) \text{ for } \beta > 0$$

f $\beta = 1$
 $F(\mathbf{r}_1, \mathbf{r}_2 \dots \mathbf{r}_p) = \sum_{i=1}^p \int_{V_i} d\mathbf{r} \rho(\mathbf{r}) \langle |\mathbf{r} - \mathbf{r_i}| \rangle$
Average distance to nearest facility

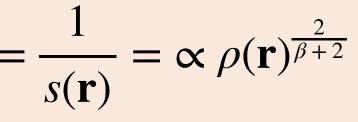
When $\beta = 1$ we minimize the average distance to the nearest facility

$$D(\mathbf{r}) \propto \rho(\mathbf{r})^{\frac{2}{1+2}} = \rho(\mathbf{r})^{\frac{2}{3}}$$

An optimal facility density $D(\mathbf{r})$ should scale as the **population** $ho(\mathbf{r})$ to the 2/3

$\beta = 1$ minimizes social opportunity cost we should see this for public facilities

[4] J. I. Park and B. J. Kim, "Generalized p-median problem for the optimal distribution of facilities," J. Korean Phys. Soc., vol. 80, no. 4, pp. 352–358, Feb. 2022, doi: <u>10.1007/s40042-021-00361-2</u>.
 [5] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim, "Scaling laws between population and facility densities," Proceedings of the National Academy of Sciences, vol. 106, no. 34, pp. 14236–14240, Aug. 2009, doi: <u>10.1073/pnas.0901898106</u>.



$F \text{ is maximized } (\delta^2 F < 0) \text{ for } \beta \in (-2,0)$ If $\beta = 0$ $F(\mathbf{r}_1, \mathbf{r}_2 \dots \mathbf{r}_p) = \sum_{i=1}^p \int_{V_i} d\mathbf{r} \rho(\mathbf{r})$ Total cell population

When $\beta = 0$ we maximize the total cell population

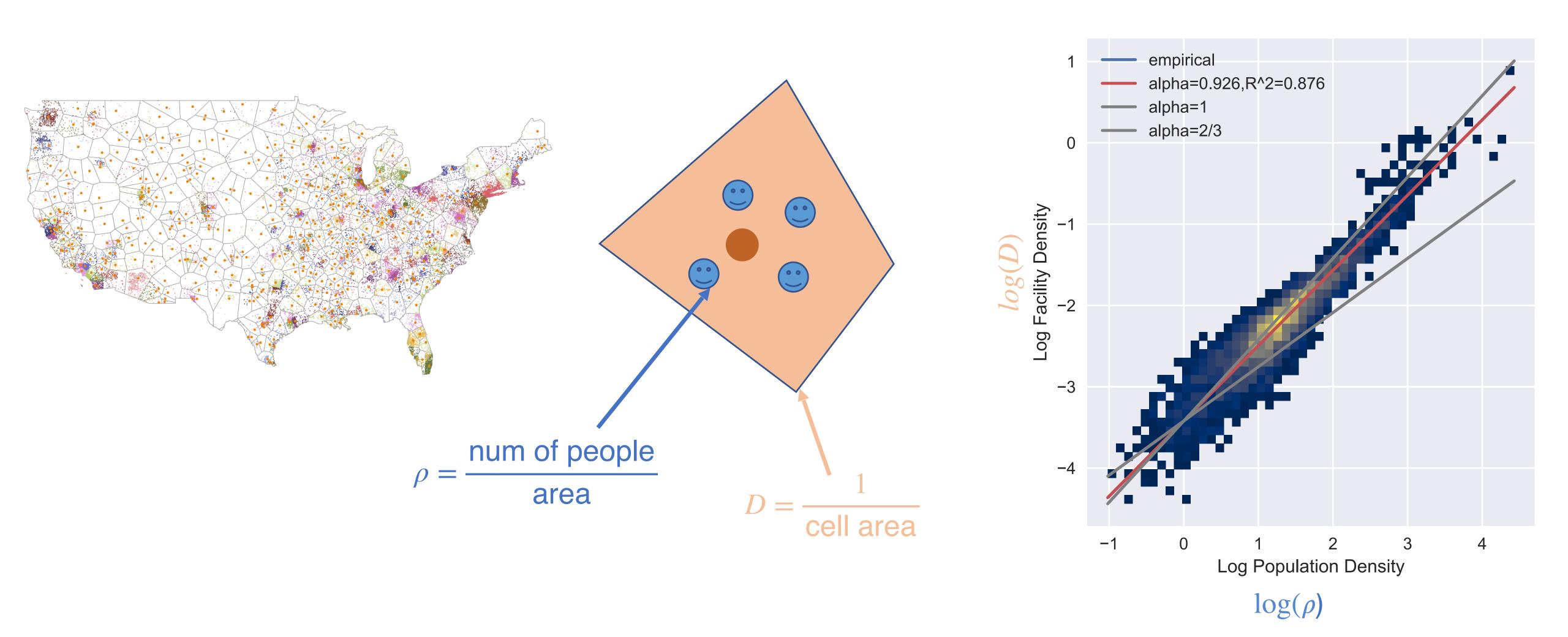
$$D(\mathbf{r}) \propto \rho(\mathbf{r})^{\frac{2}{0+2}} = \rho(\mathbf{r})^1$$

An optimal facility density $D({f r})$ should scale as the population $ho({f r})$

 $\beta = 0$ maximizes profit we should see this for commercial facilities

Quantifying Facility Misallocation

1: Create Voronoi Cells based on facility placements

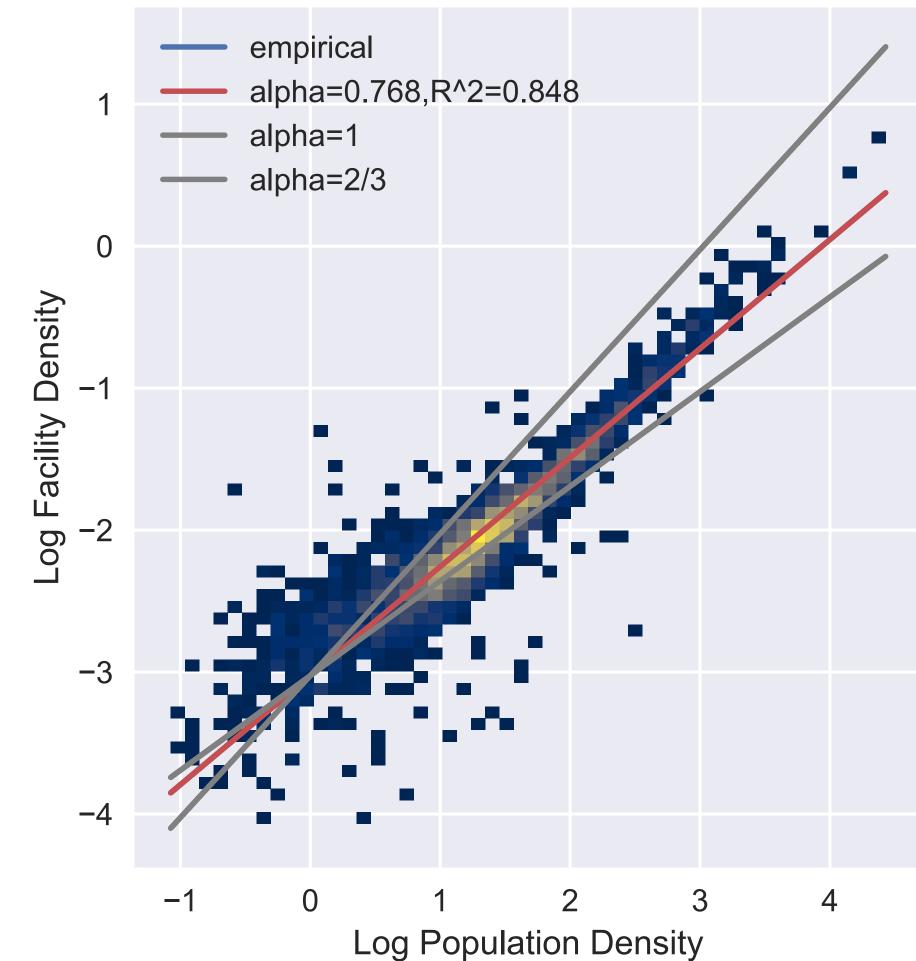


2. For each cell, calculate population density, ρ and facility density D

3. Fit data to a Reduced Major Axis(RMA) regression[7], slope is scaling exponent

Facility Data Scaling

Schools

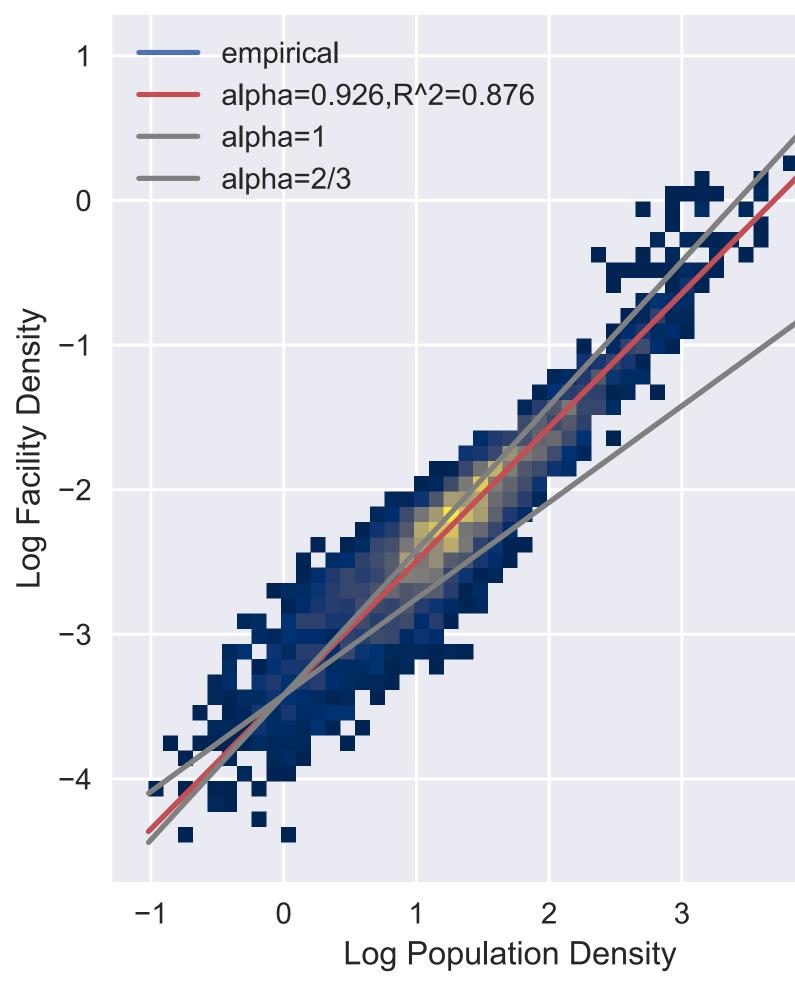


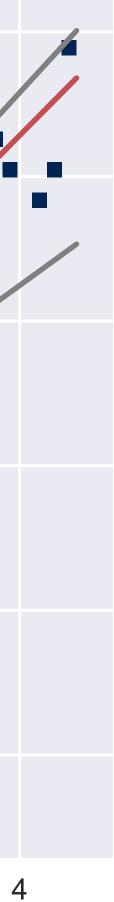
Scaling for Schools: 0,76

Public facilities should have an exponent close to 2/3

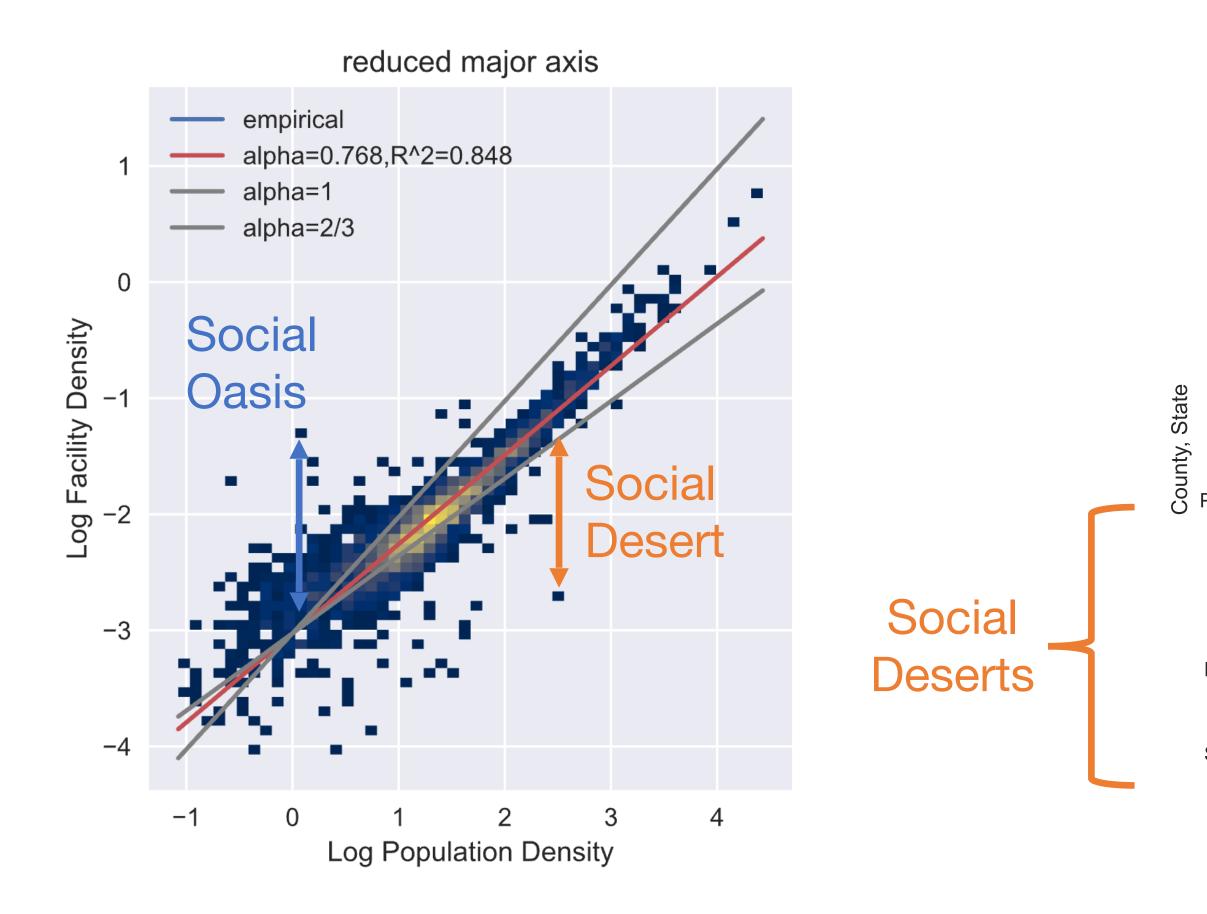
Private facilities should have an exponent close to 1

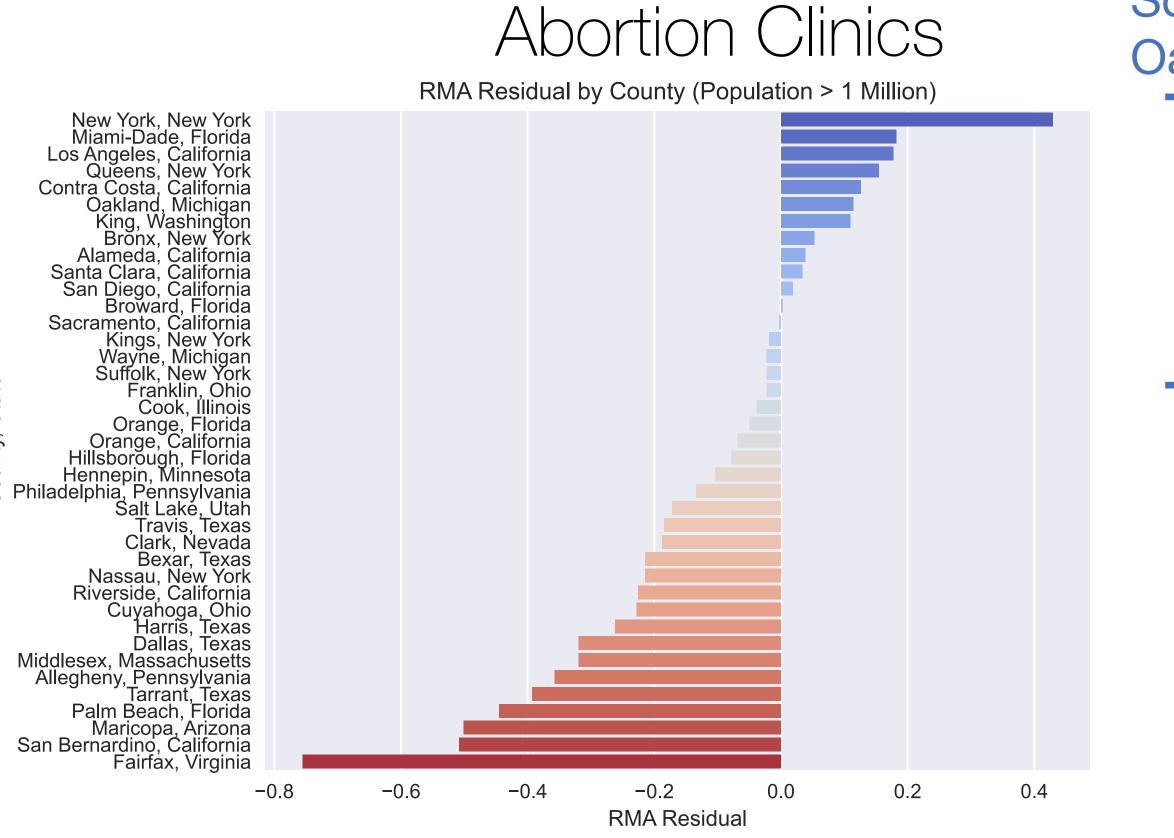
Scaling for Banks: 0,92

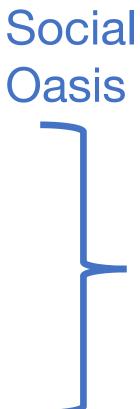




Residuals: Deserts and Oases

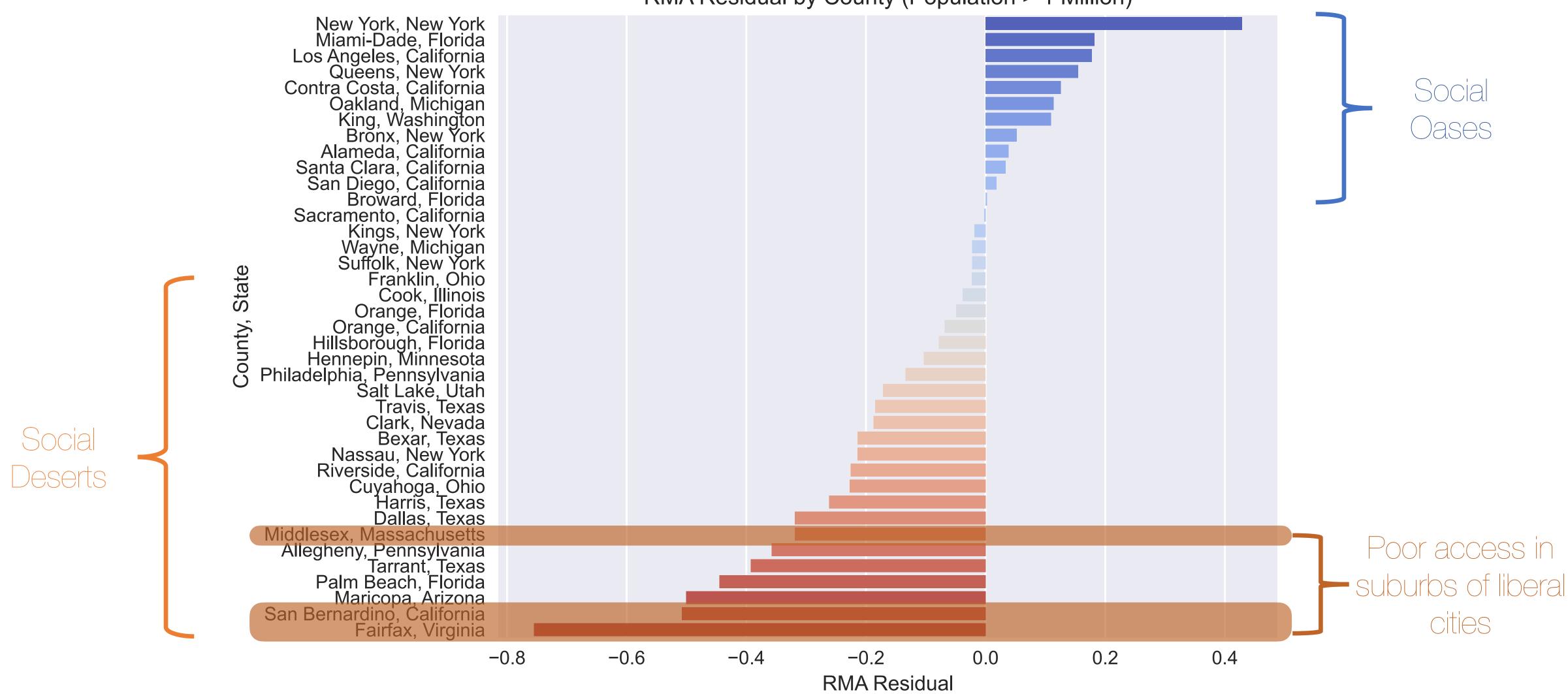






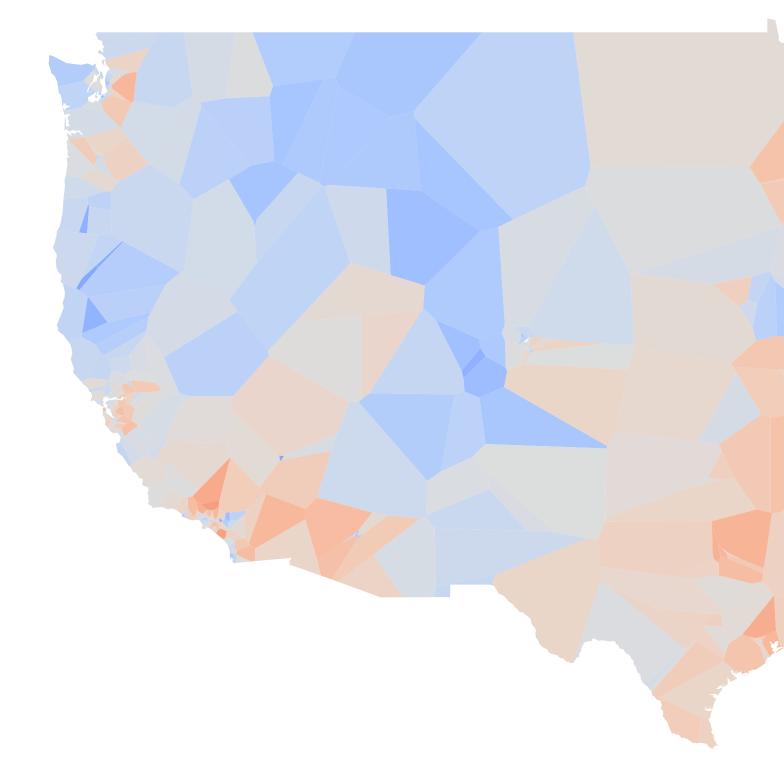
Abortion clinics access is not simply partisan

RMA Residual by County (Population > 1 Million)



Mapping Inequality Abortion Clinics

More access than expected in western states



Poor access in the south

RMA Residual

0

2

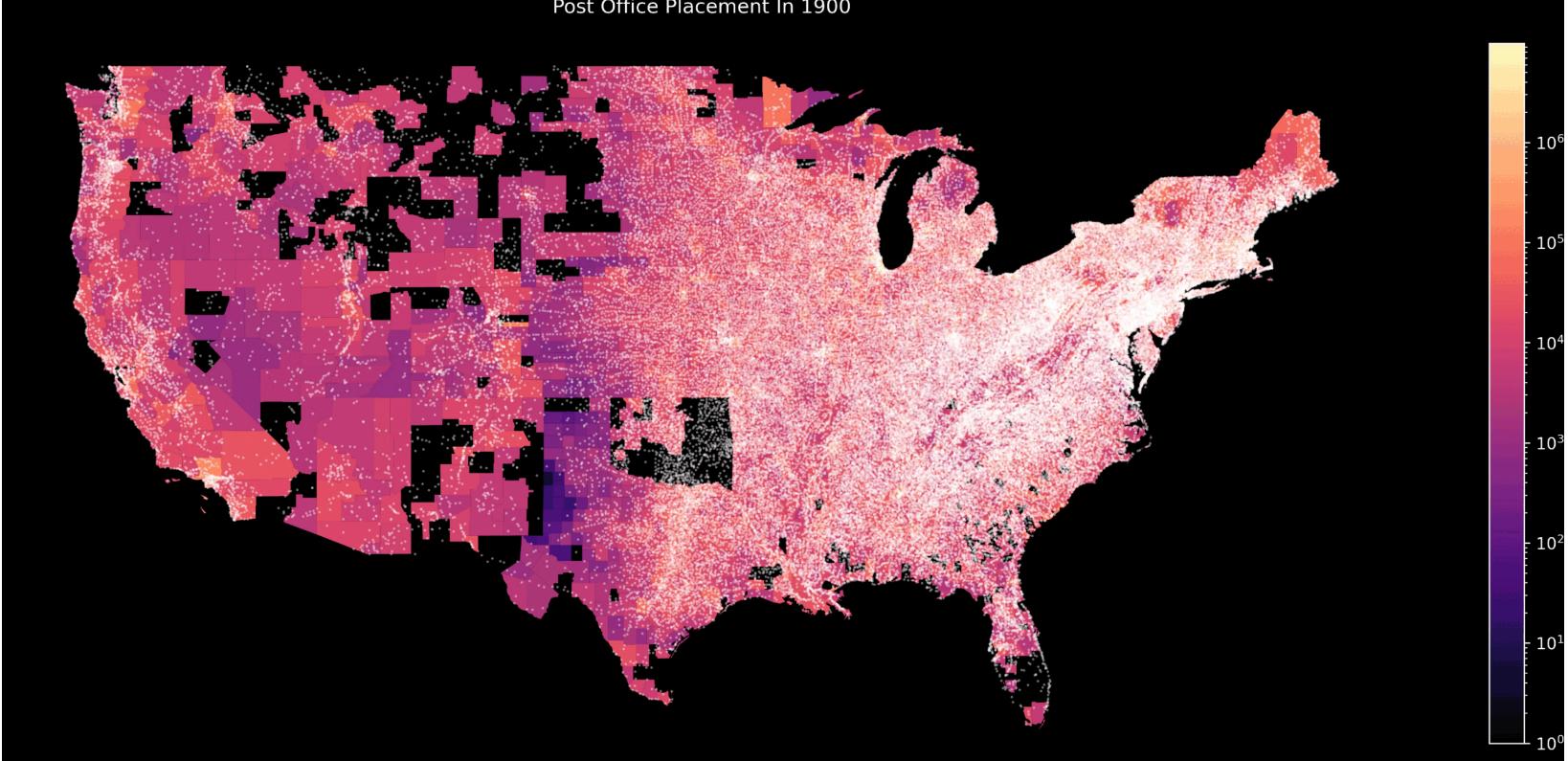
-2

-1

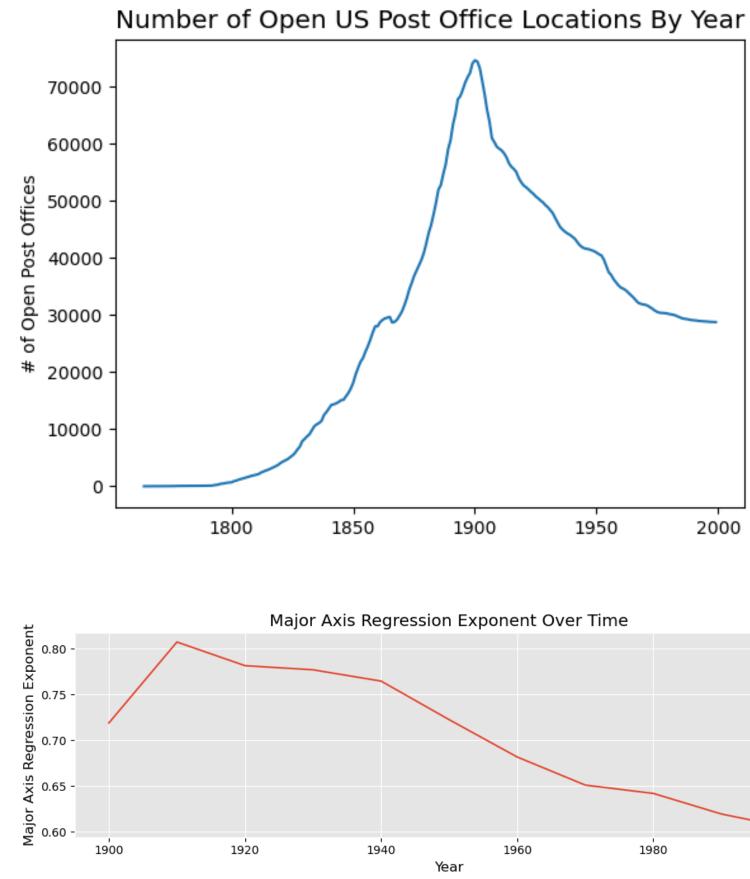
CHANGES IN DEMAND AND SUPPLY

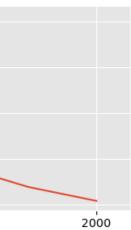
Changes in Demand: Post Office Scaling

Post Office Placement In 1900



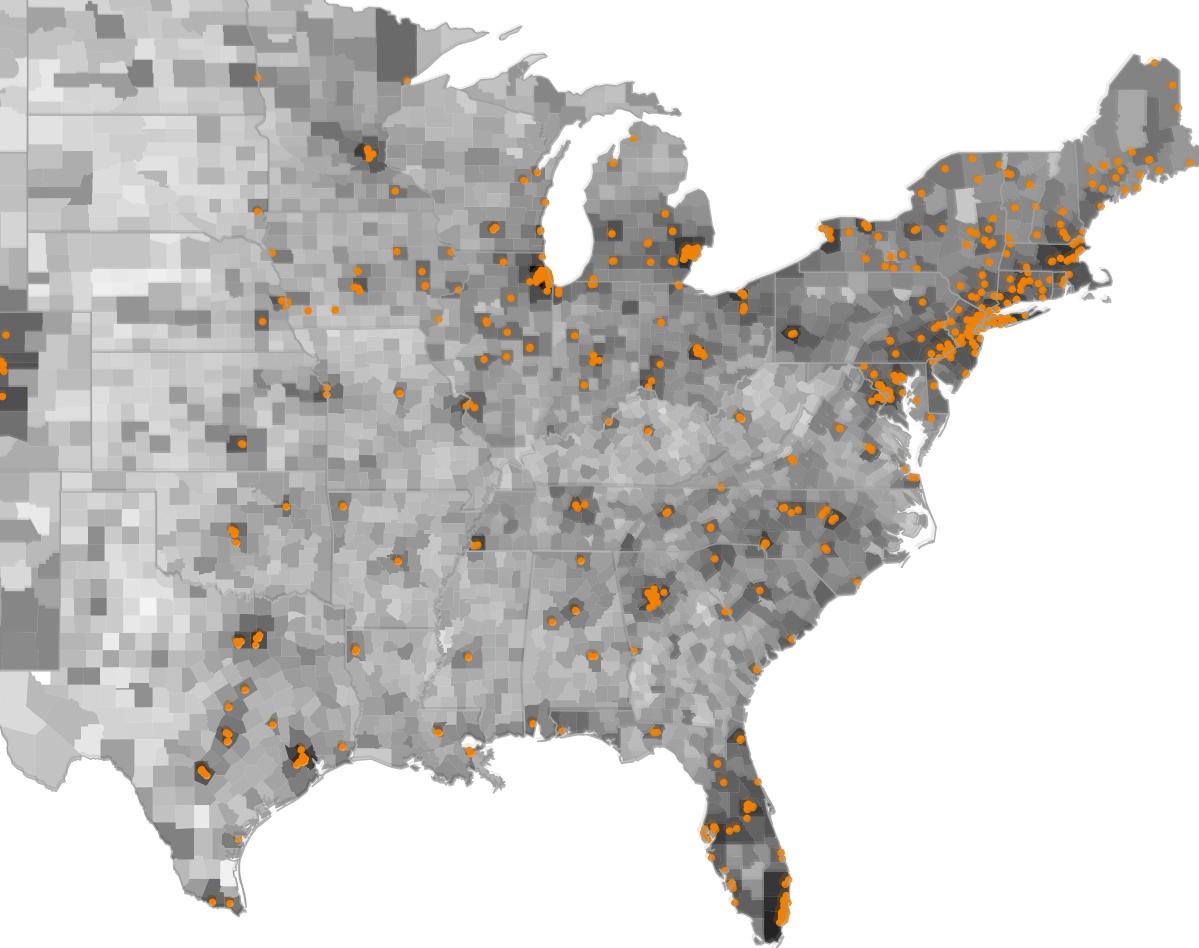
Post office scaling exponent has dropped from 0.8 to 0.6 commercial to public transition





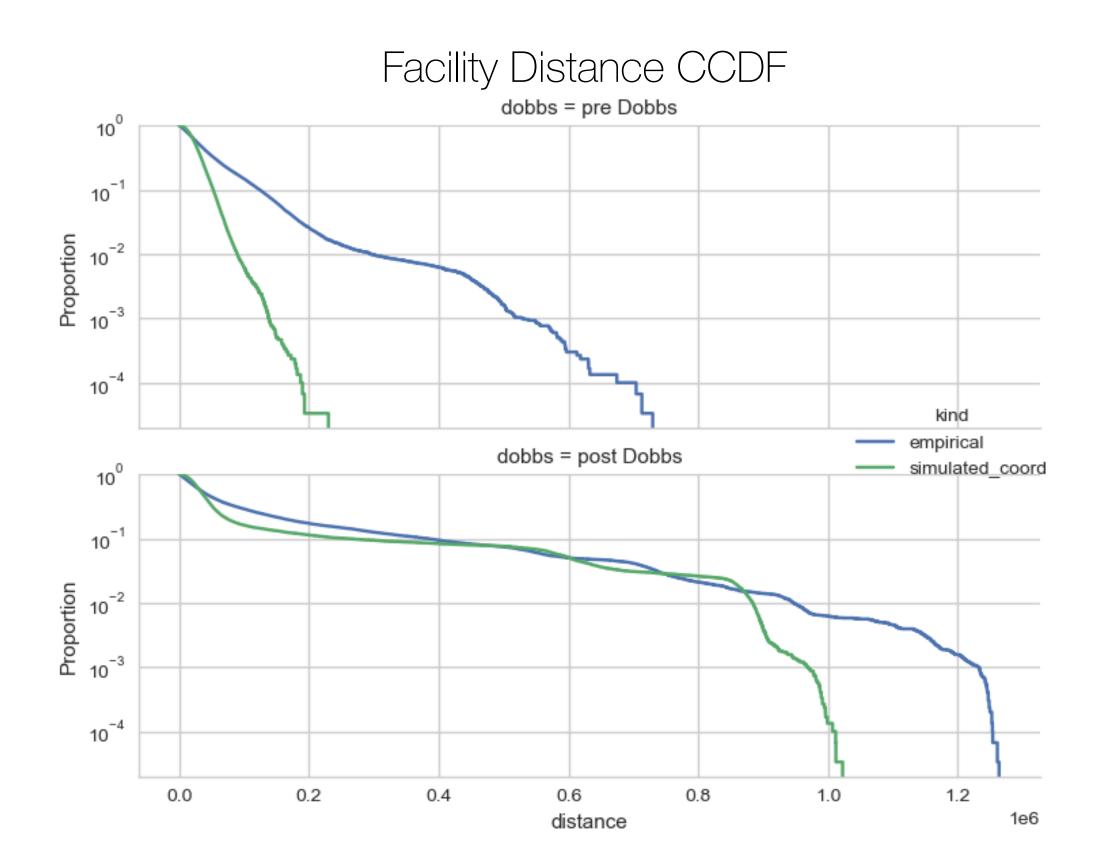
Changes in Supply: Abortion Clinics

Poret Doubles Leegral Stattus

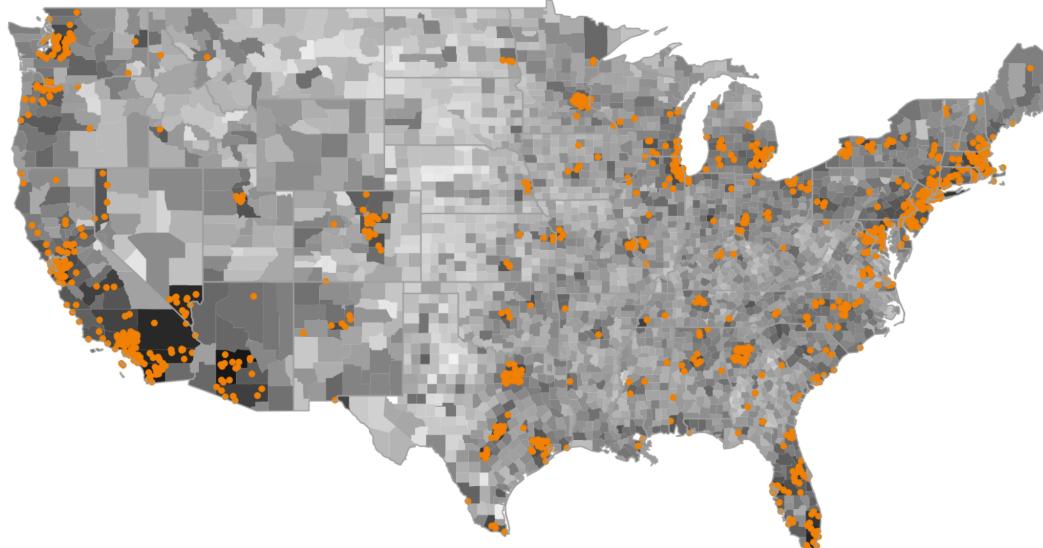


Changes in Supply: Abortion Clinics

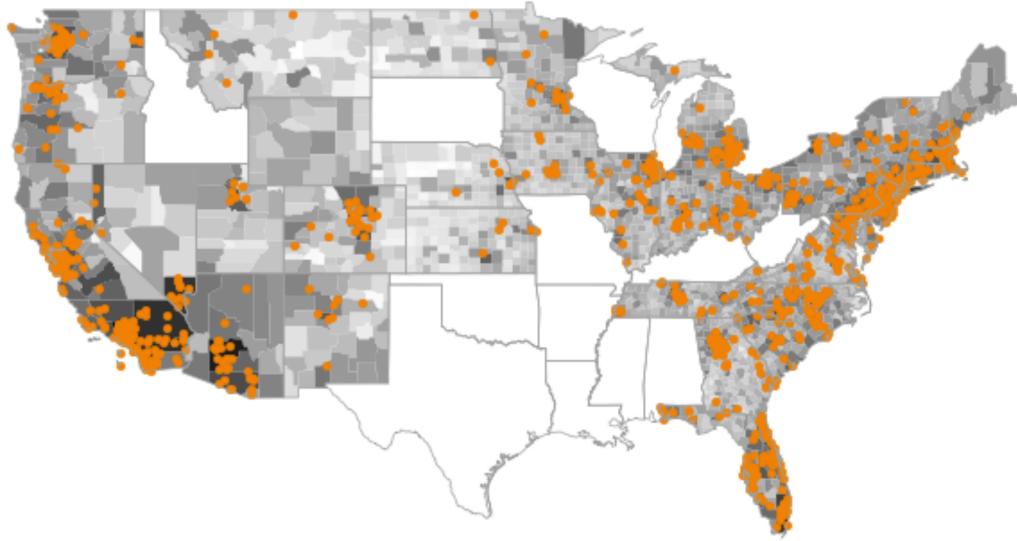
How much does Dobbs change the travel distance to the nearest abortion clinic? Compare empirical layout to optimal layout



Pre Dobbs Optimal Layout

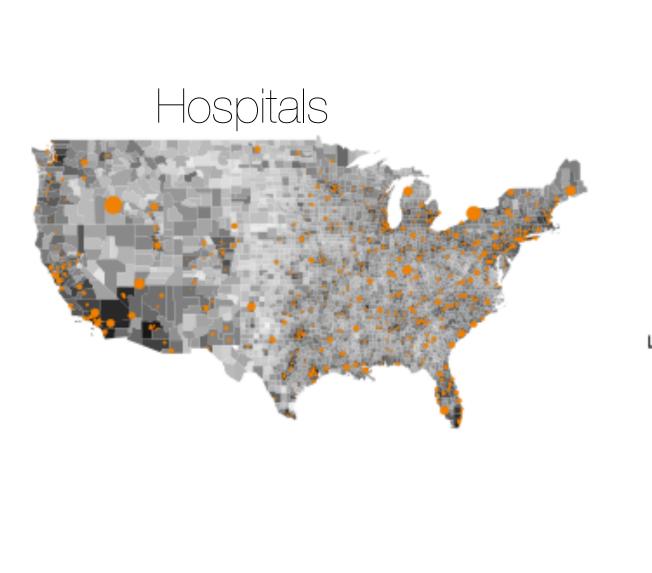


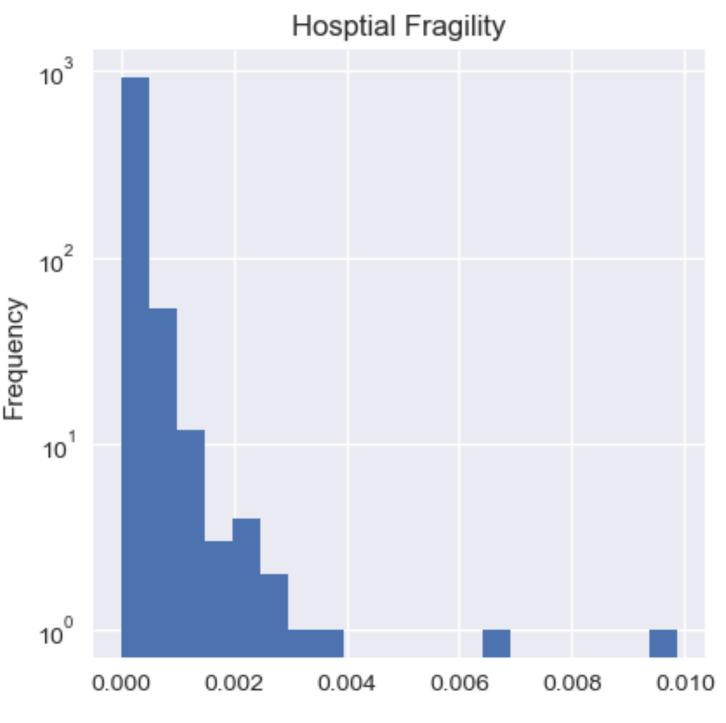
Post Dobbs Optimal Layout



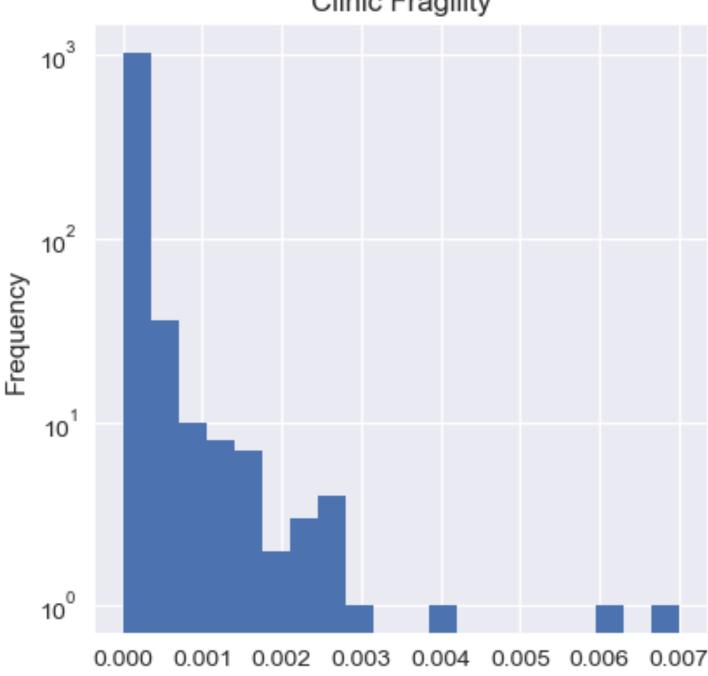
Fragility

- Fragility: The fragility of facility i is the decrease in objective function caused by removing facility i from the genome
- Hospitals: ullet
 - Boise ID, Buffalo NY, St George UT, Bangor ME
- Abortion Clinics:
 - Memphis TN, Little Rock AK, Jackson MI, Corpus Cristi TX, Las Vegas NV and Fargo, ND
- Conclusion: \bullet
 - Hospitals which are in urban centers in otherwise rural areas are fragile
 - Clinics which are in southern cities are the most • fragile





Clinic Fragility

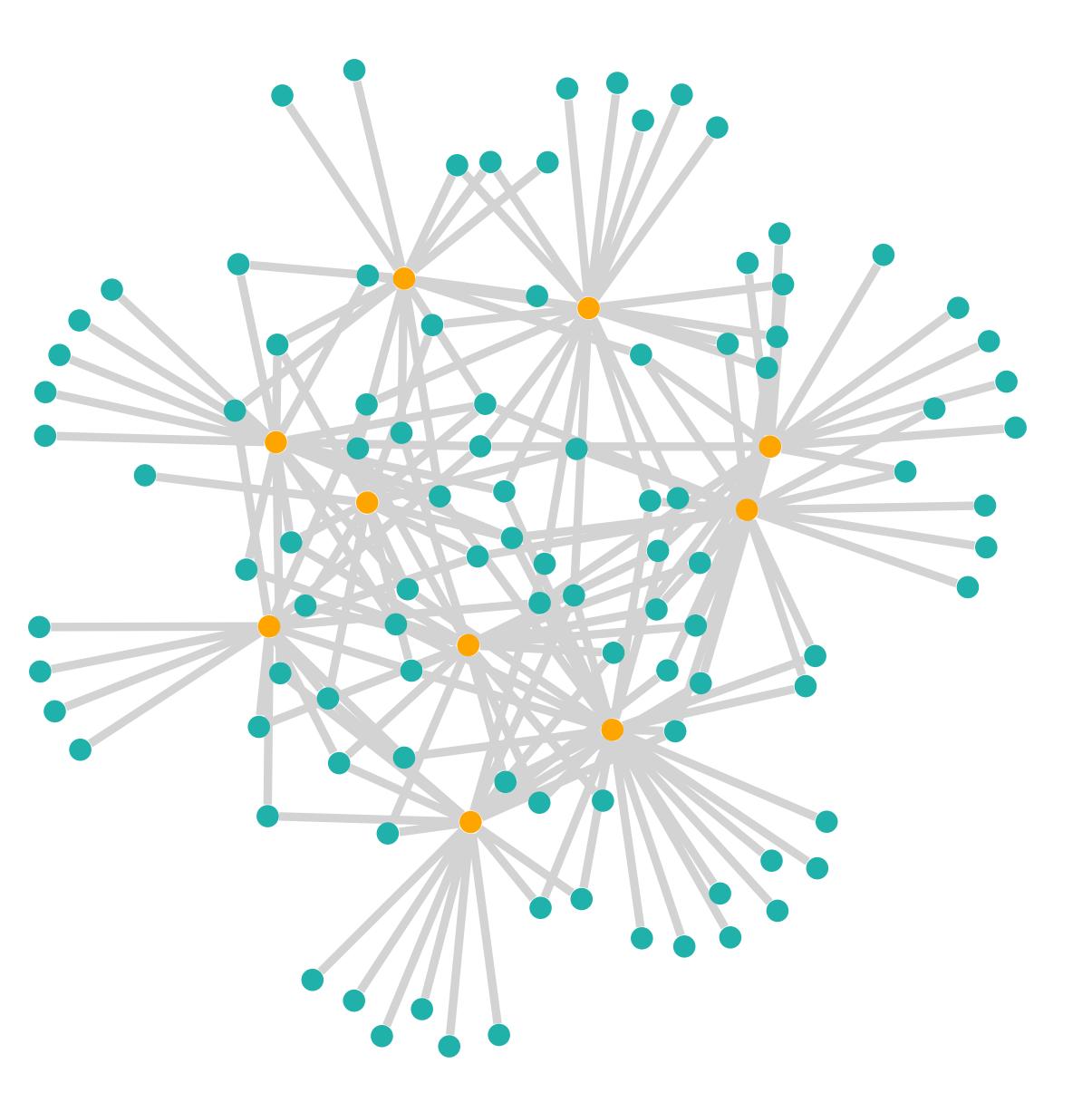


Conclusion

- Changes in demand are detectable through scaling exponent changes
- Social deserts in aboriton clinic access don not fall along simply partisan lines

Scaling relationships derived from optimal facility placement can be used to identify social deserts and social oases

Part 2: The Emergence of Polarization



INTRODUCTION BACKGROUND

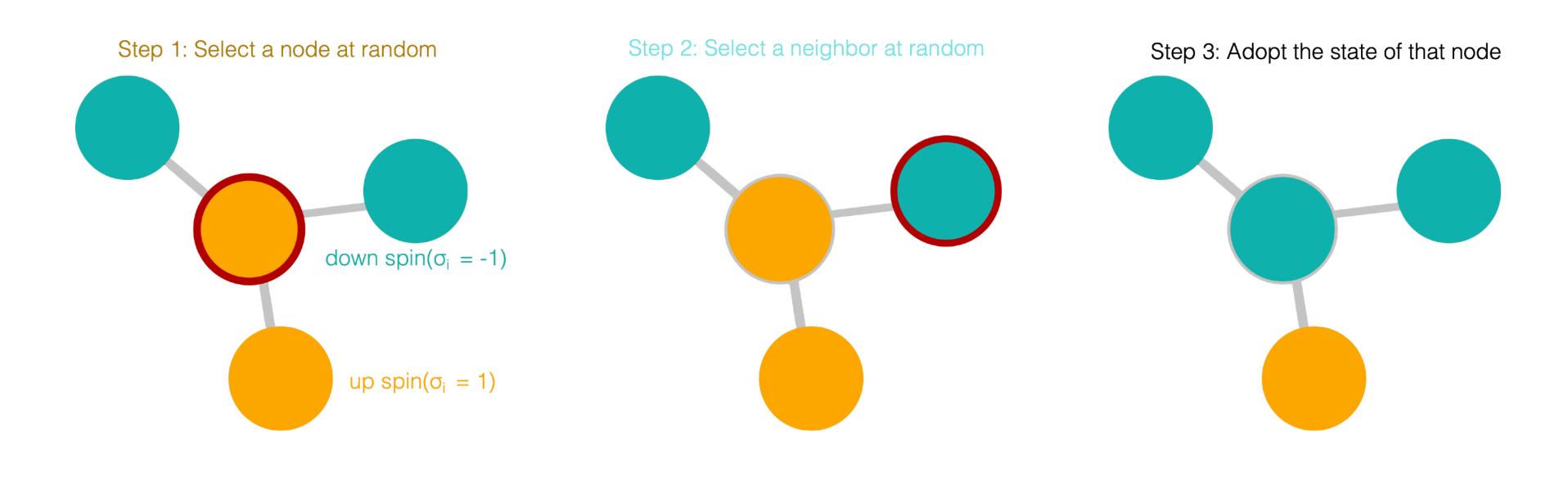
Groups Groups Groups

Social interactions are not pairwise - groups matter!

How do higher-order interactions affect the development of consensus?

VOTER MODEL AMES

VOTER MODELS LINEAR VOTER MODEL



Voter Model Steps

- **1**. A random node *i* with state $\sigma_i \in \{-1, 1\}$, is selected
- 2. The selected node adopts the spin σ_j of a randomly selected neighbor $j \in \mathcal{N}_i$
- 3. Process is repeated until consensus is reached.
- 4. Transition rate for a node $\dot{\sigma}_i \propto$ fraction of disagreeing neighbors

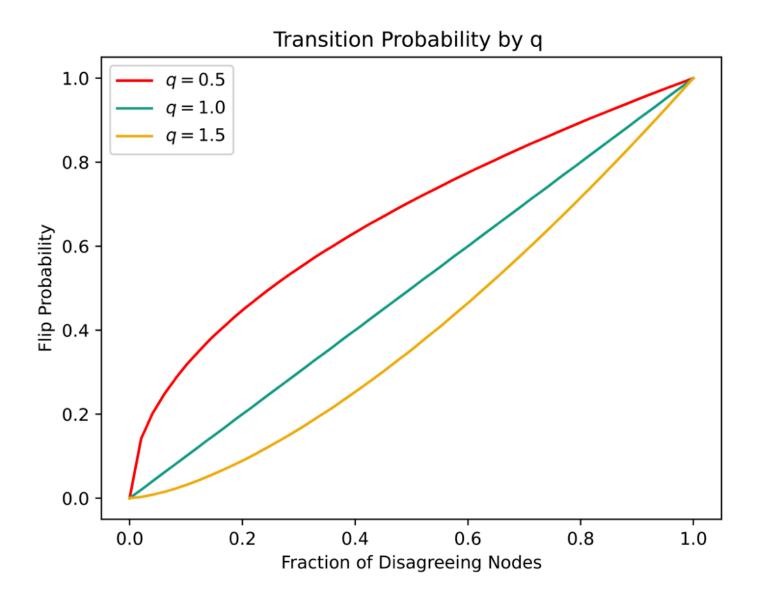
VOTER MODELS Non-Linear

Q Voter Model Steps^{*a*}

- 1. A random node σ_i selects q of its neighbors. If all of its neighbors have the same spin, σ_i adopts that spin
- 2. Transition rate for a node $\dot{\sigma}_i \propto \text{fraction of disagreeing neighbors}^q$

What does q do?

- q controls the conformity bias of the model.
- if q > 1: conformist nodes nodes, if q < 1, we get the hipster nodes nodes.</p>



^aCastellano et al., 2009.

VOTER MODELS

VOTER MODEL ON HIGHER ORDER NETWORKS

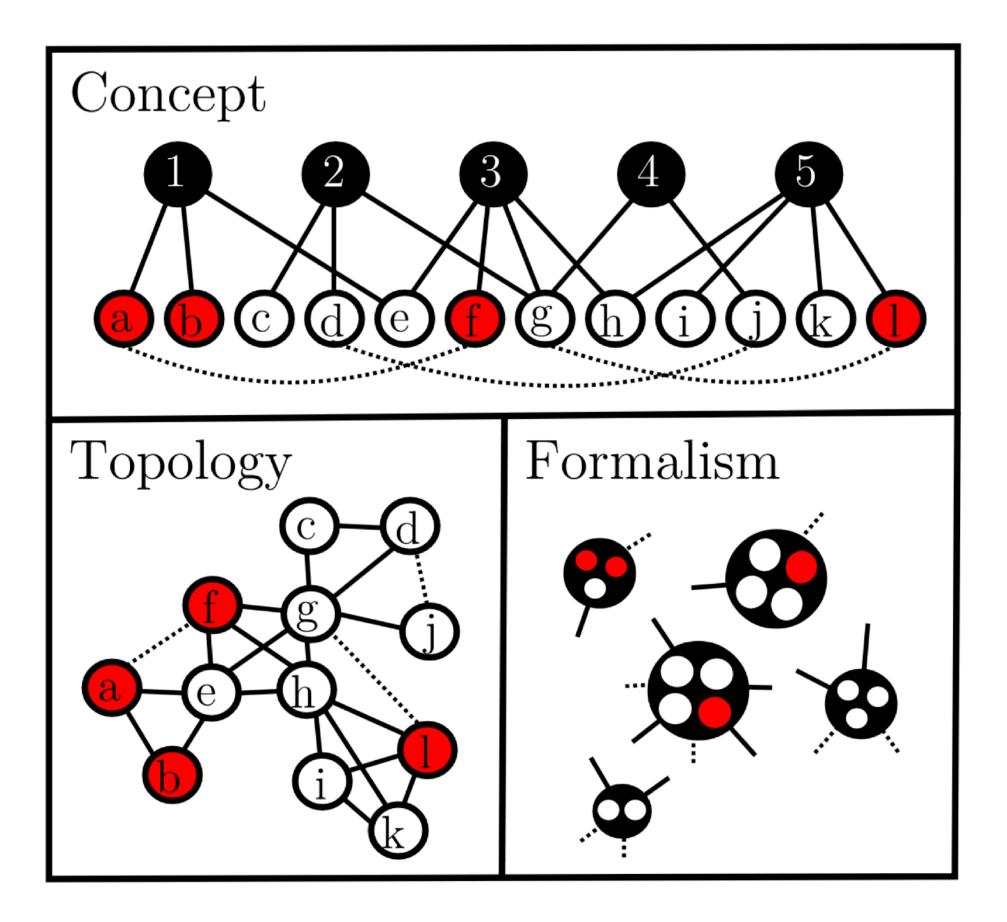
- Each node belongs to a set of cliques. Nodes interact with other nodes in the same clique.
- Higher-order network topology generated by the model proposed by Newman^a.

Description

The model is parameterized by two distributions

- 1. N the number of nodes
- 2. M the number of cliques
- 3. $\{p_n\}$ the distribution of nodes per clique
- 4. $\{g_m\}$ the distribution of cliques per node

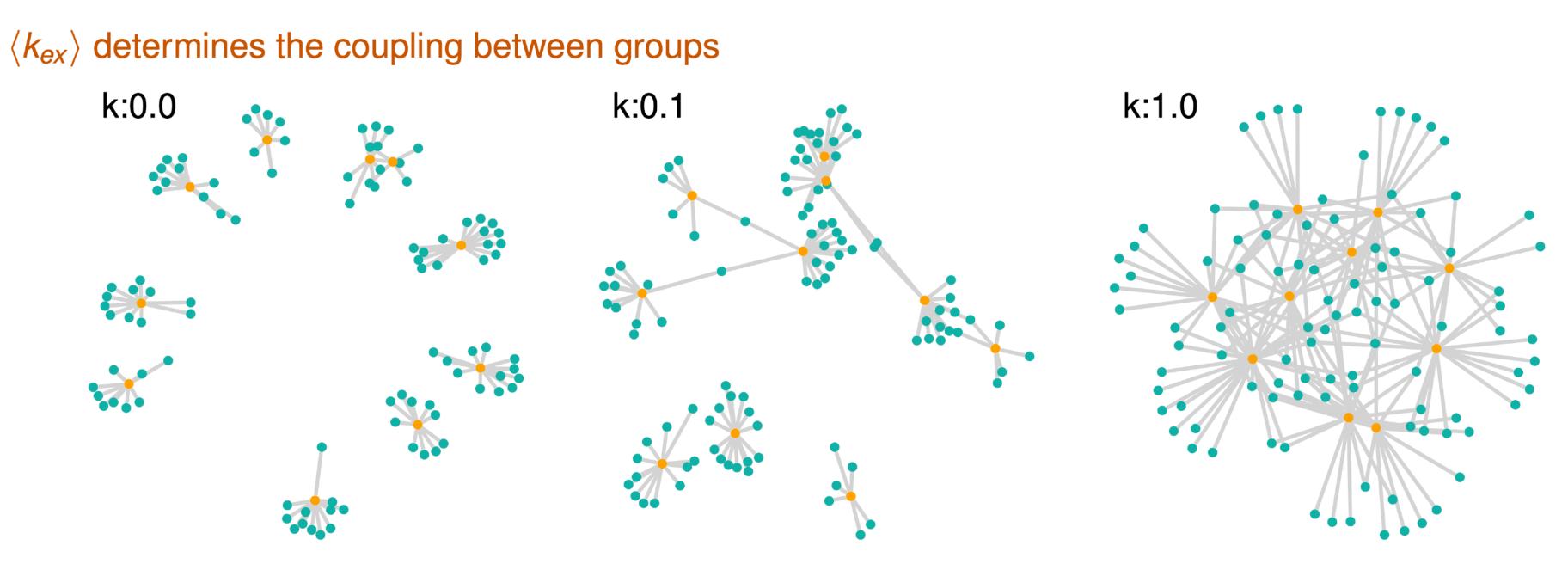
^aNewman, 2003.



VOTER MODELS

VOTER MODEL ON HIGHER ORDER NETWORKS

Clique Coupling

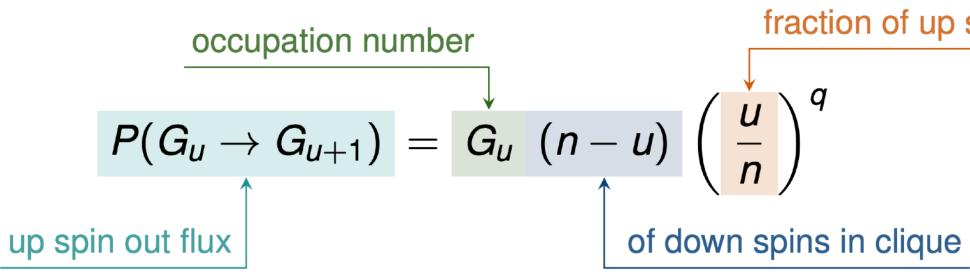


DERIVING THE MASTER EQUATION THE FIRST TERM

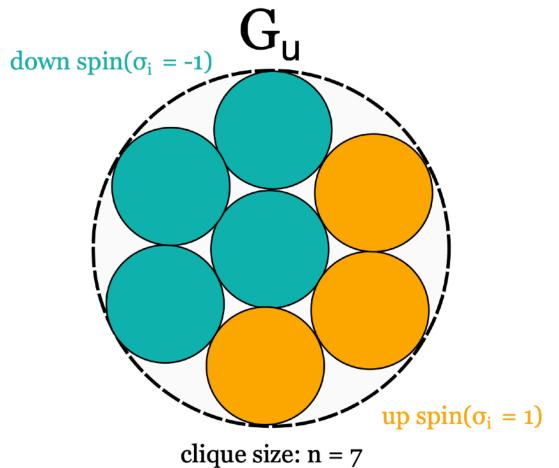
- Approximate master equations(AMES) are high accuracy approximations of binary state dynamics on networks^a
- Occupation number :

 G_{u} the fraction of the system in a clique with u up spins.

Example: up spin out flux : the rate at which down spins flip to up spins



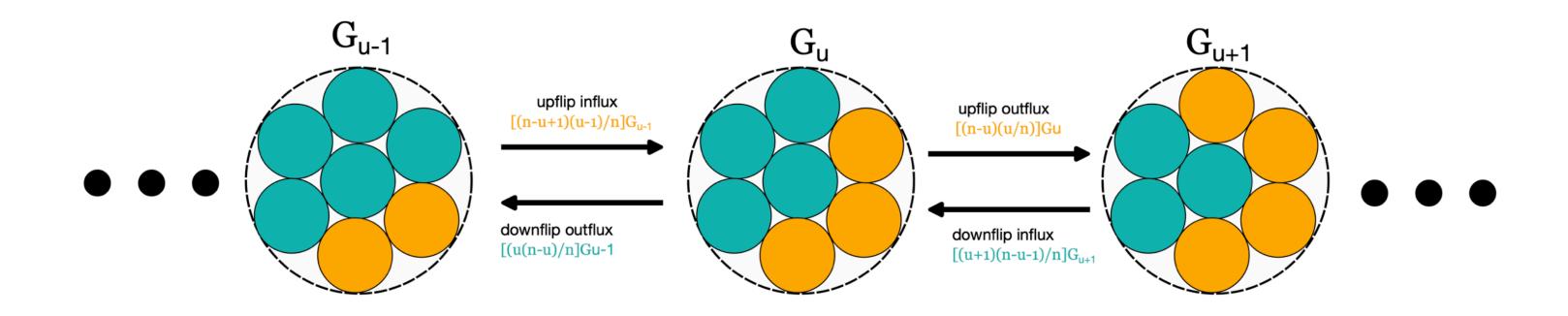
^aGleeson, 2011; Hébert-Dufresne et al., 2010; St-Onge et al., 2021.



fraction of up spins in clique

up spin count u = 3

DERIVING THE MASTER EQUATION THE WHOLE SHEBANG



Definition 3.1

Voter Model Master Equation for Constant Clique Size with Uncoupled Cliques

$$\frac{dG_{u}}{dt} = G_{u-1} \left[(n-u+1) \left(\frac{u-1}{n} \right)^{q} \right] + G_{u+1} \left[(u+1) \left(\frac{n-u-1}{n} \right)^{q} \right] - G_{u} \left[(n-u) \left(\frac{u}{n} \right)^{q} \right] - G_{u} \left[(u) \left(\frac{n-u}{n} \right)^{q} \right]$$

$$\frac{1}{up \ spin \ out \ flux} \qquad down \ spin \ out \ flux$$

(1)

COUPLED CLIQUES MOMENT CLOSURES

Definition 4.1

Moment Closure The moment closure approximates the coupling between a group and surrounding groups

 $\rho_u(t) = \langle k_{ex} \rangle$

 $ho_{d}(t) = \langle k_{e} \rangle$

Definition 4.2

Voter Model Master Equation for Constant Clique Size and Moment Closure

$$\frac{dG_{u}}{dt} = G_{u-1}\left[\left(n-u+1\right)\left(\frac{u-1}{n}\right)^{q}+\rho_{u}\right]+G_{u+1}\left[\left(u+1\right)\left(\frac{n-u-1}{n}\right)^{q}+\rho_{d}\right]-G_{u}\left[\left(n-u\right)\left(\frac{u}{n}\right)^{q}+\rho_{u}\right]-G_{u}\left[\left(u\right)\left(\frac{n-u}{n}\right)^{q}+\rho_{d}\right]$$
(4)

VOTER MODEL AMES

$$\frac{\sum_{u} G_{u}((n-u)\left(\frac{u}{n}\right)^{q})}{\sum_{u} G_{u}(n-u)}$$
(2)
$$\frac{\sum_{u} G_{u}(u\left(\frac{n-u}{n}\right)^{q})}{\sum_{u} G_{u}(u)}$$
(3)

SOLVING FOR THE STEADY STATE

Definition 5.1

Detailed Balance In equilibrium, each elementary process is in equilibrium with its reverse process.

$$egin{aligned} & P(G_u
ightarrow G_{u+1}) = P(G_{u+1}
ightarrow G_u) \ & P(G_u
ightarrow G_{u-1}) = P(G_{u-1}
ightarrow G_u) \end{aligned}$$

We know the recursion formula is

$$G_u = \frac{(n-u+1)\left[\rho + \left(\frac{u-1}{n}\right)^q\right]}{u[\rho + \frac{n-u}{n}]}G_{u-1}$$

So the formula for G_u is

$$G_{u} = \frac{1}{Z} \prod_{i=0}^{u} \frac{(n-u+1)\left[\rho + \left(\frac{u-1}{n}\right)\right]}{u\left[\rho + \frac{n-u}{n}\right]}$$
$$Z = \sum_{i=0}^{N} \prod_{j=0}^{u} \frac{(n-j+1)\left[\rho + \left(\frac{j-1}{n}\right)\right]}{(n-j+1)\left[\rho + \left(\frac{j-1}{n}\right)\right]}$$

Where

$$G_{u} = \frac{1}{Z} \prod_{i=0}^{u} \frac{(n-u+1)\left[\rho + \left(\frac{u-1}{n}\right)\right]}{u\left[\rho + \frac{n-u}{n}\right]}$$
$$Z = \sum_{u=1}^{N} \prod_{j=0}^{u} \frac{(n-j+1)\left[\rho + \left(\frac{j-1}{n}\right)\right]}{j\left[\rho + \left(\frac{j-1}{n}\right)\right]}$$

VOTER MODEL AMES

LINEAR RESULTS LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

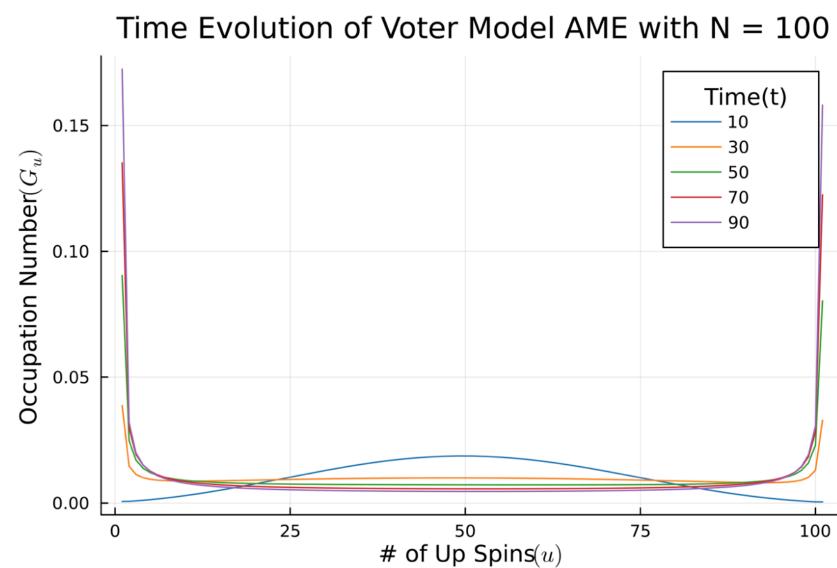
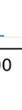


Figure. Time series of numerical integration of AME with $\rho = 0.0$ the distribution collapses two the two absorbing states



LINEAR RESULTS LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

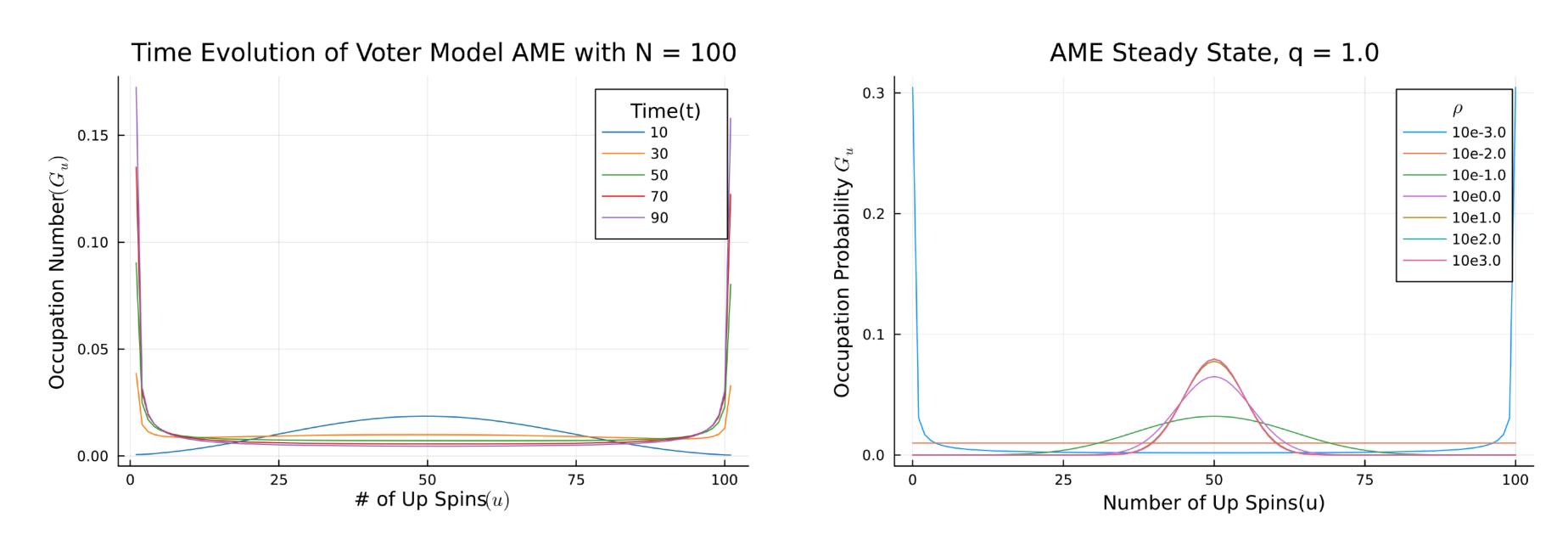


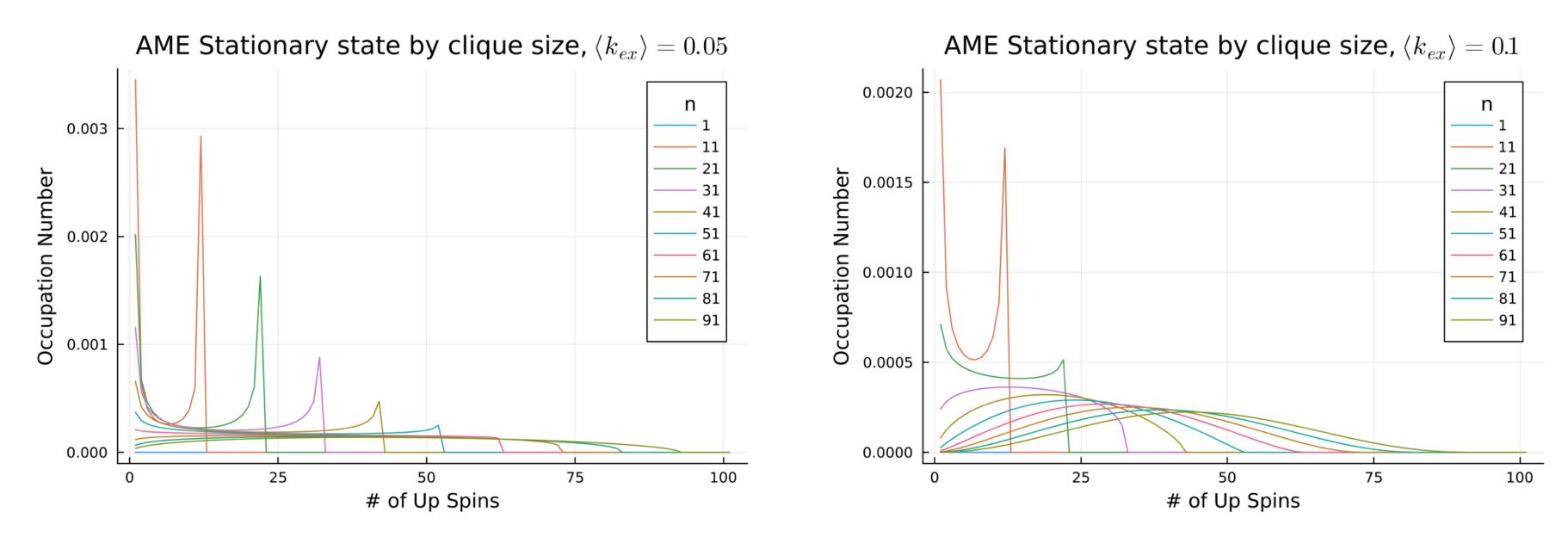
Figure. Time series of numerical integration of AME with $\rho = 0.0$ the distribution collapses two the two absorbing states

Figure. Steady state distribution for AMES as a function of ρ . Coexistence emerges as coupling increases

LINEAR RESULTS HETEROGENEOUS GROUP SIZES

Larger cliques support coexistence at lower coupling strengths

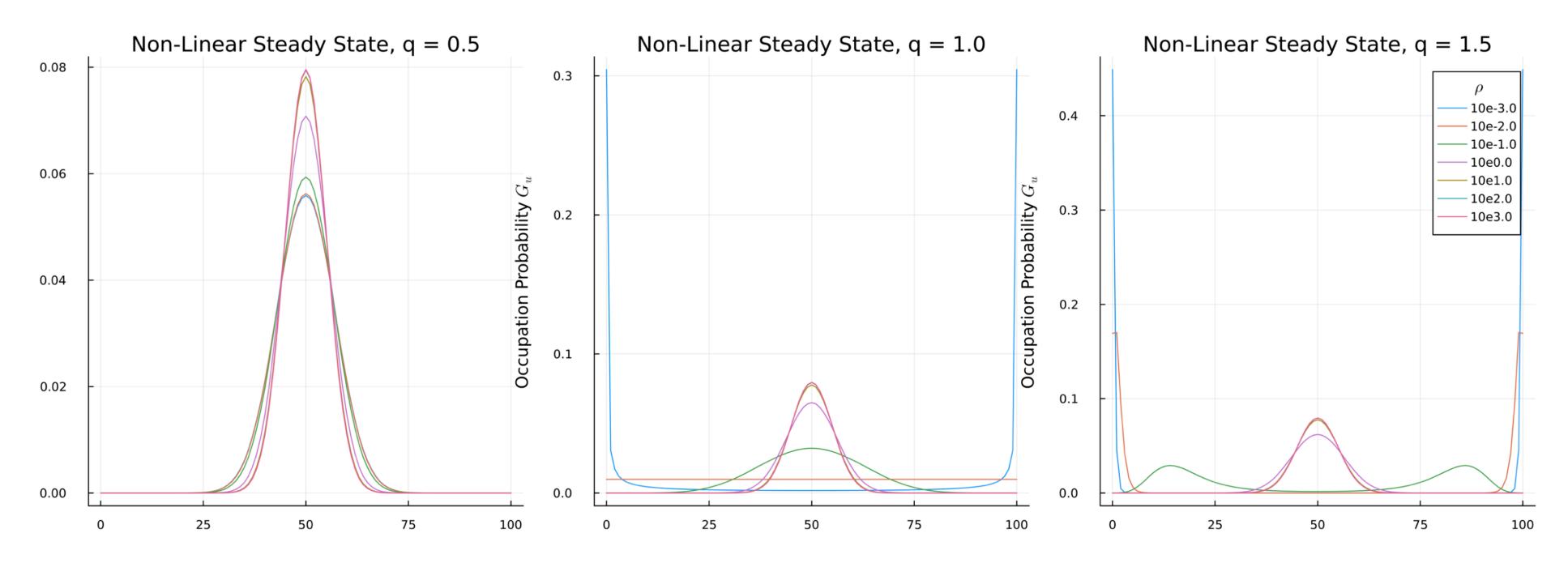
At $\langle k_{ex} \rangle = 0.05$, coexistence only occurs at n > 50. At $\langle k_{ex} \rangle = 0.1$, coexistence occurs above n > 20



NON LINEAR RESULTS

Conformist nodes(q > 1) create stable minorities

For q < 1 hipster nodes drive model towards coexistence For q > 1 conformist nodes create a stable minority



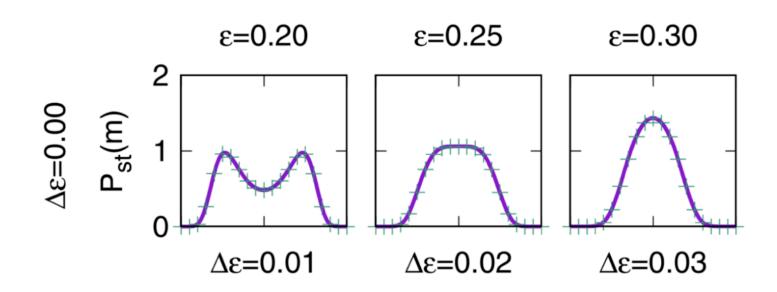
VOTER MODELS Non-Linear

Noisy Non Linear Voter Model^{*a*}

- 1. Give each node a random chance to flip, separate rates for each spin states a_0, a_1 .
- 2. Total noise level $\epsilon \propto a_0 + a_1$
- 3. Noise asymmetry level $\Delta \epsilon \propto a_0 a_1$

Steady State Distributions

- 1. Certain noise levels lead to emergence unimodal magnetization distribution
- 2. Others lead to bimodal distribution

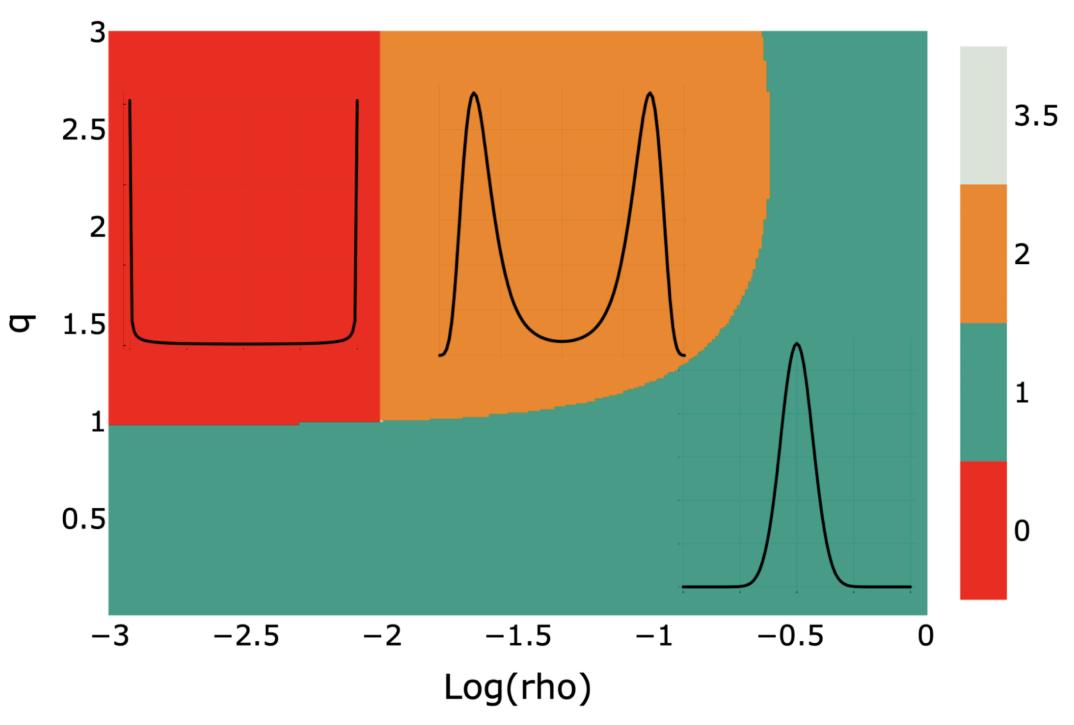


^aPeralta et al., 2018.

NON LINEAR RESULTS PHASE DIAGRAM

Island of Minority Coexistence

- Let's determine the possible states of the model by plotting the number of local maxima by parameter values
- For low ρ, the critical transition of the original q voter model remains the same.
- At higher couplings \(\rho\) > 0.01, consensus states become impossible. We see a bimodal distribution where stable minorities coexist within cliques.



CONCLUSION

Conclusions

- equations
- Increasing coupling between cliques creates coexistence in steady states

Future Work

- Derive an analytical expression for different phases of model.
- Can the higher order effects be seen as a noise term?
- How does heterogeneity in non-linearity affect results eg. hipster cliques?
- Compare results with results on pairwise network

Formulated dynamics of non-linear voter model on higher order networks using approximate master

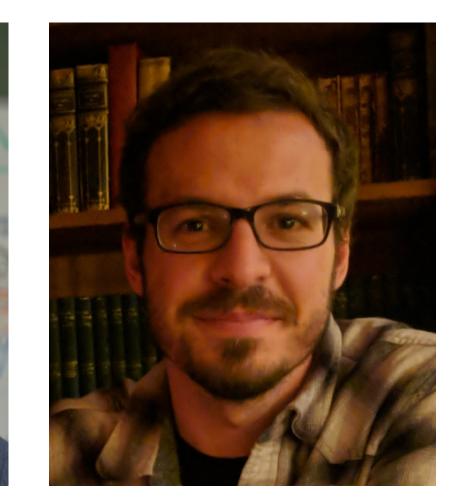
High q combined with a specific range of couplings allows for stable minority coexistence.

Peter Dodds

Chris Danforth

Ethan Ratliff Crain

Thank You



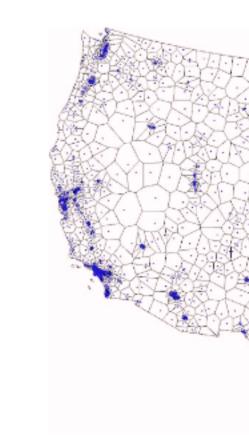
Laurent Hébert-Dufresne

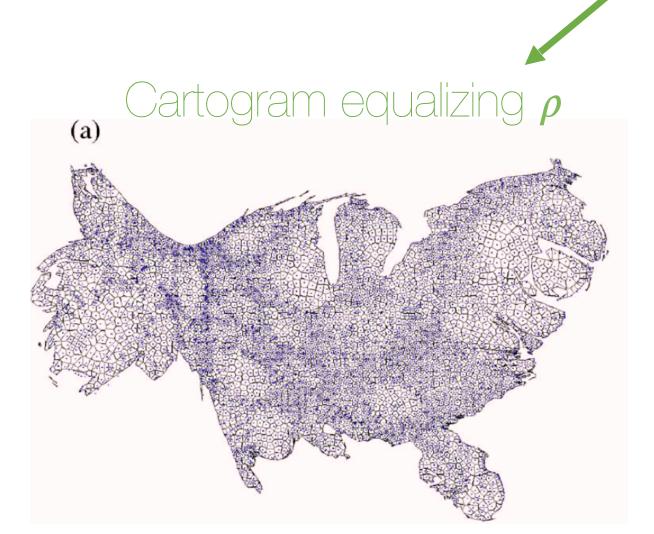
Nick Cheney

Alex Friedrichsen

Backup Slides

Facility Robustness



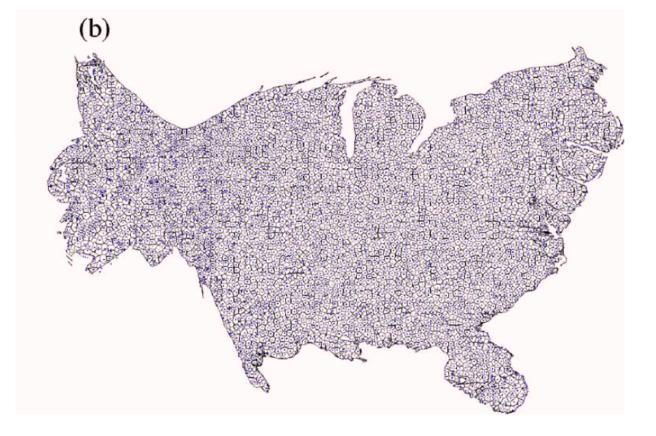


Facilities partition space equally when space is is distorted to equalize the appropriate exponent

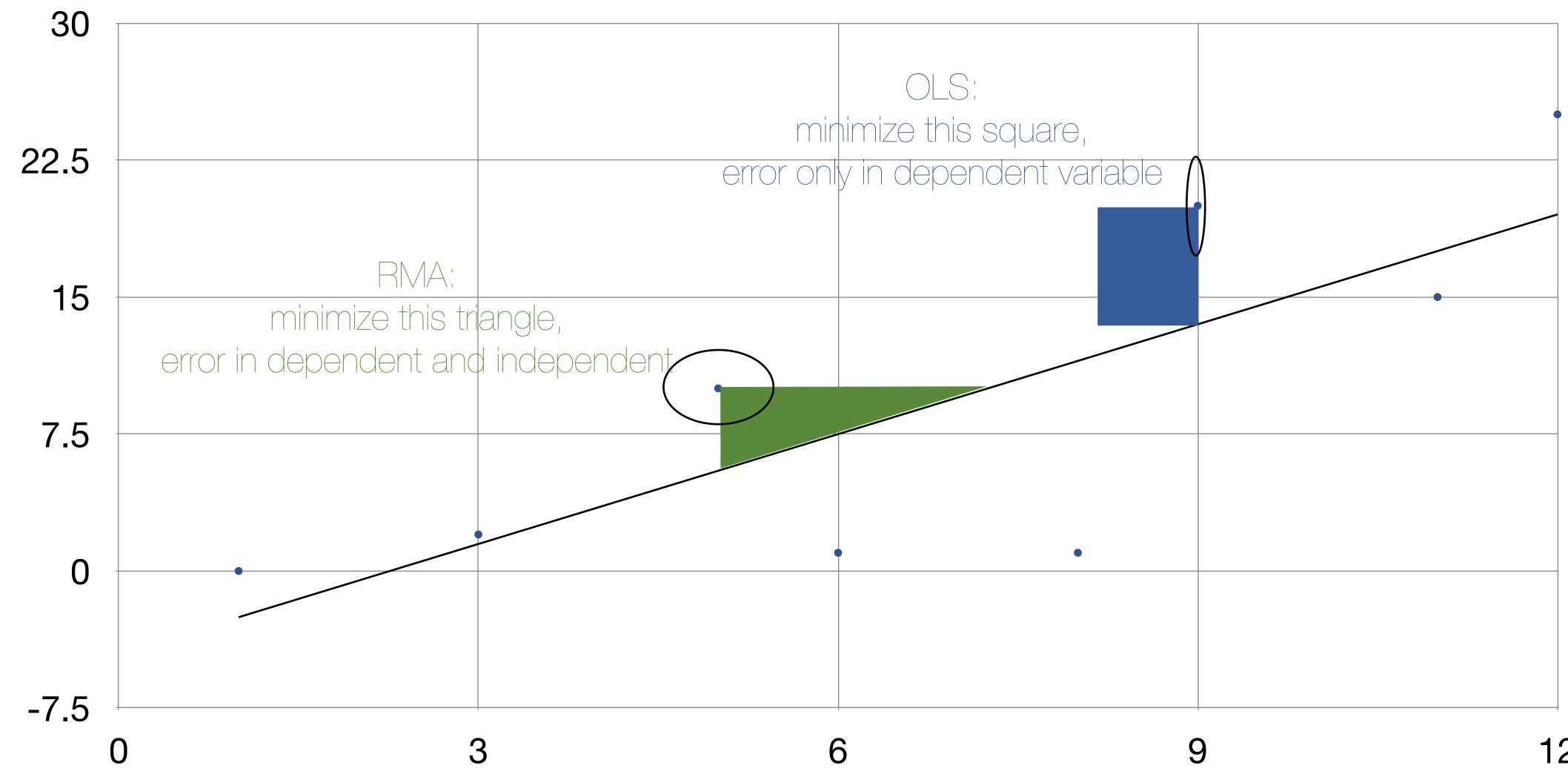
[6]M. T. Gastner and M. E. J. Newman, "Optimal design of spatial distribution networks," Phys. Rev. E, vol. 74, no. 1, p. 016117, Jul. 2006, doi: 10.1103/PhysRevE.74.016117.

Public Facilities with scaling 2/3

Cartogram equalizing $\rho^{\frac{2}{3}}$



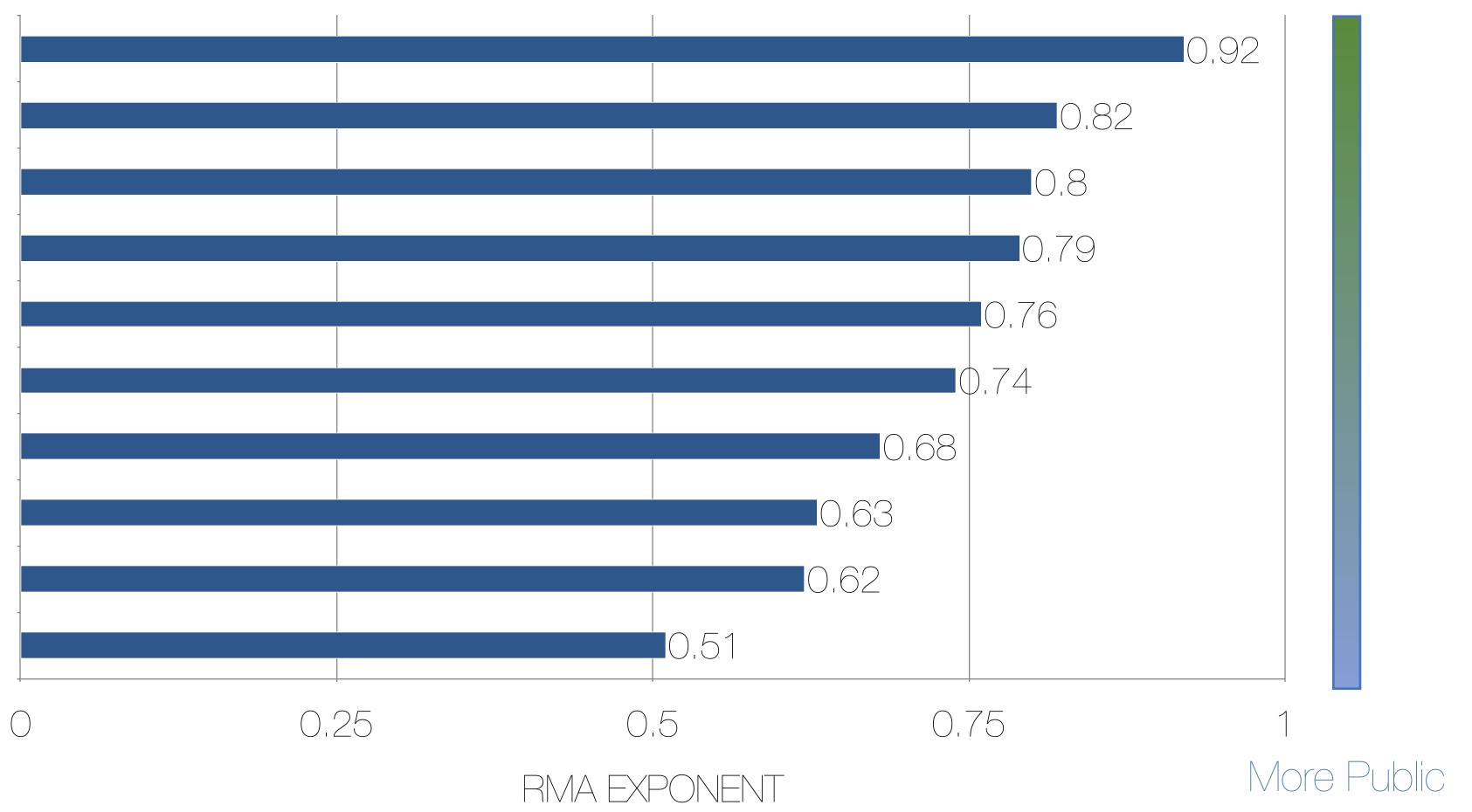
PL(



[7] J. M. V. Rayner, "Linear relations in biomechanics: the statistics of scaling functions," Journal of Zoology, vol. 206, no. 3, pp. 415–439, 1985, doi: 10.1111/j.1469-7998.1985.tb05668.x

How do Empirical Facilities Scale?

Banks LAUNDRY CHURCHES BAPTIST GROCERS ABORTION CLINICS HOSPITALS SUPERMARKETS CHURCHES CATHOLIC DEATH CARE ACCOMODATIONS

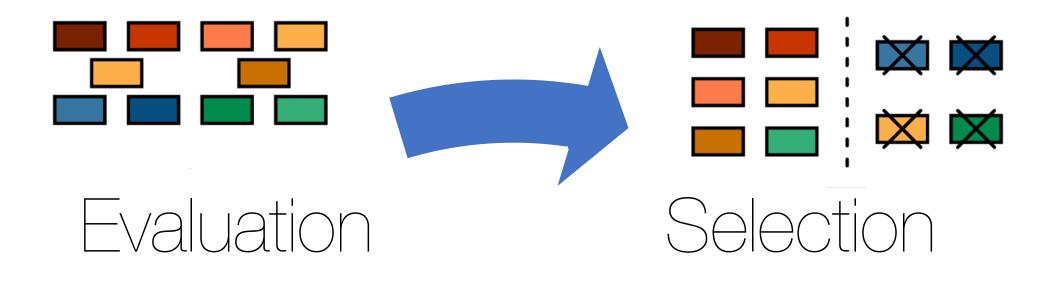


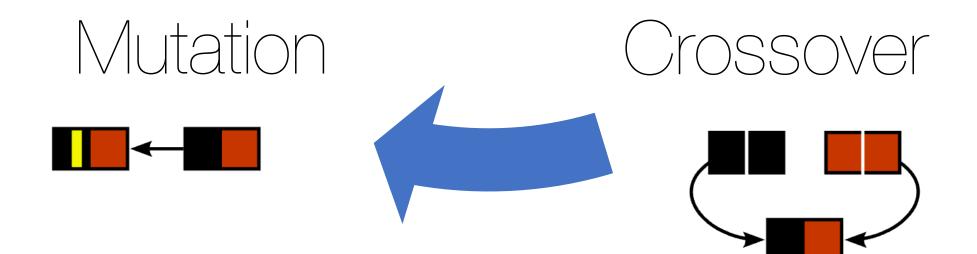
FACILITY TYPE

More Commercial

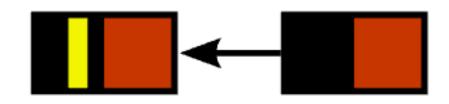
What Are Evolutionary Algorithms?

- Class of optimization
 algorithms inspired by
 biological evolution
- Algorithms of last resort
 - only useful when there is no gradient and no information about the fitness landscape
- Solution to a problem are genomes
- Loss function is their fitness
- Solutions are evolved and crossbred to identify better solutions

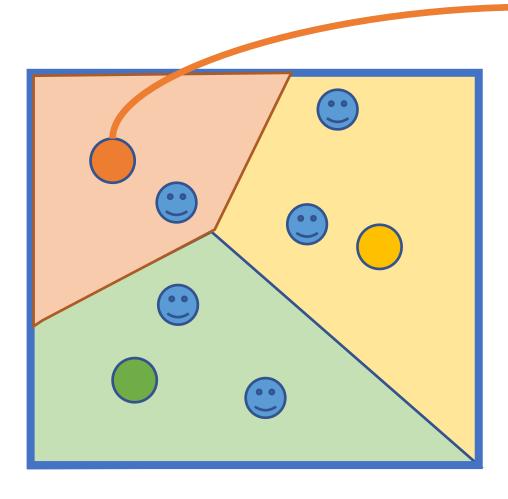


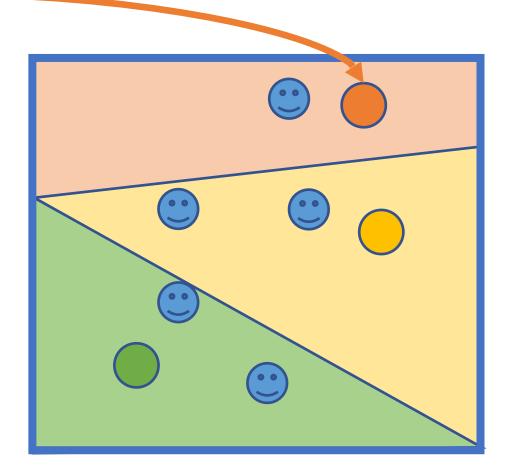


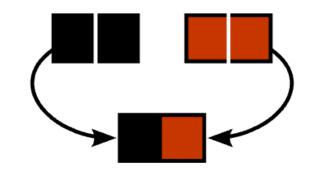
Mutation



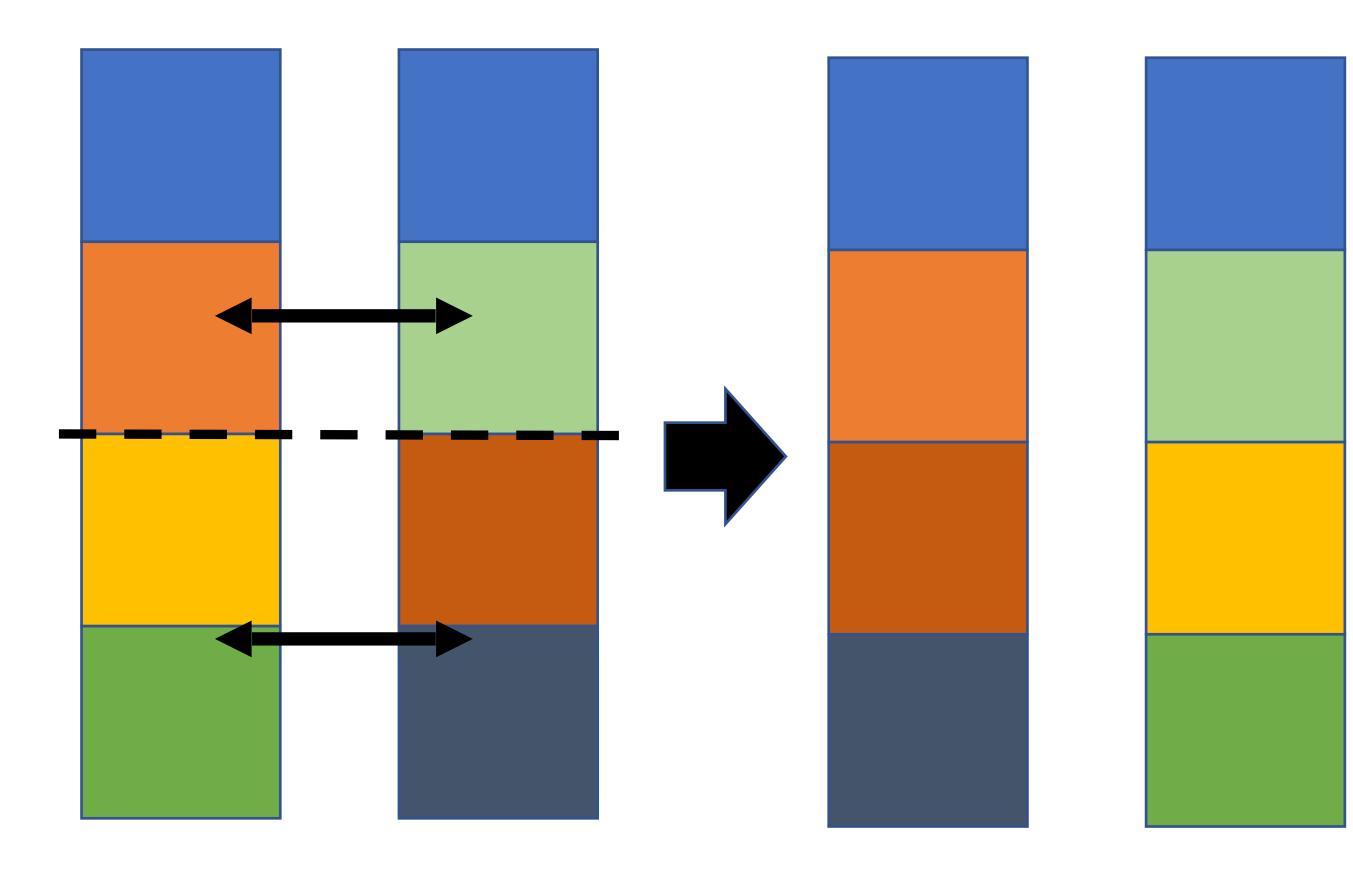
Mutation: Randomly relocate a subset of the facilities





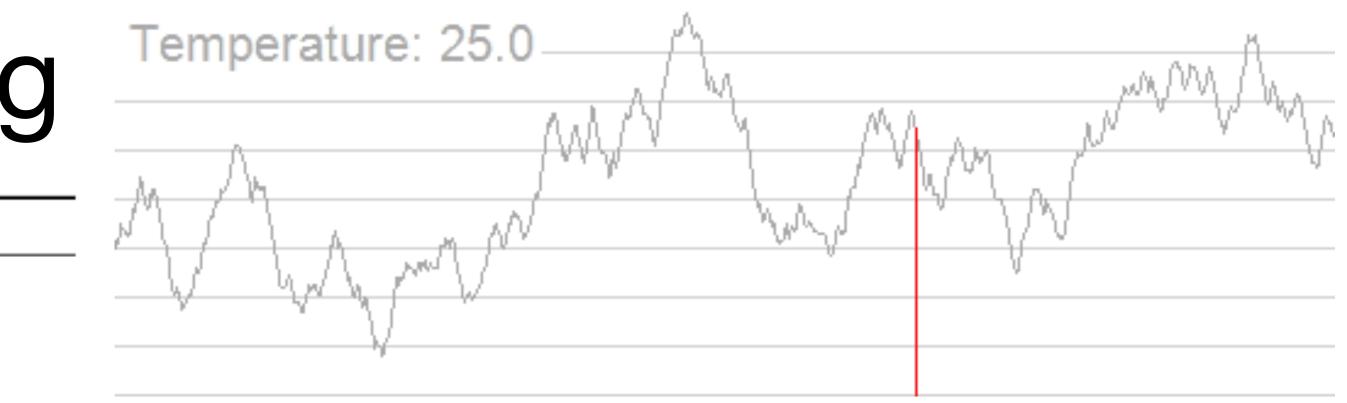


Crossover: Divide the facility at N points, swap



Simulated Annealing

Algorithm 1 Simulated Annealing Without Perturbation			
1:	procedure SIMULATEDANNEALING(Tmax, Tmin, α)		
2:	Initialize solution g		
3:	Evaluate Fitness of solution $f(F(g))$		
4:	$T \leftarrow T_{max}$		
5:	for $i \leftarrow 1$ to Generation do		
6:	$g' \leftarrow Mutate(g')$		
7:	$\Delta E \leftarrow F(g') - F(g)$		
8:	if $\Delta E < 0$ then		
9:	$g \leftarrow g'$		
10:	else		
11:	$p \leftarrow exp(-\Delta E/T)$		
12:	$r \leftarrow random(0, 1)$		
13:	if $r < p$ then		
14:	$g \leftarrow g'$		
15:	end if		
16:	end if		
17:	$T \leftarrow \alpha T$		
18:	end for		
19: return <i>g</i>			
20: end procedure			



- Randomly mutate a facility
- If the mutated facility has higher fitness, accept it.
- If the mutated facility has lower fitness accept it with a probability $exp(\frac{F F'}{T})$
- Where T is the temperature, decreases
 by a factor of alpha every generation

$\mu + \lambda$ Evolutionary Strategy

Algorithm 2 μ + λ Evolutionary Strategy Without Perturbation

- 1: procedure EVOLUTIONARY STRATEGY(mu, lambda)
- $P \leftarrow$ Initialize population of λ individuals 2:

 $Best \leftarrow \Box$ 3:

5:

6:

8:

9:

- **for** $i \leftarrow 1$ to Generation **do** 4:
 - $Q \leftarrow \{\}$
 - for each individual s in S do

$$g' \leftarrow Mutate(g)$$

$$f_1 \leftarrow \text{AssessFitness}(g')$$

end for $Q \leftarrow (g', f_1)$ $P \leftarrow P \cup Q$

 $P \leftarrow$ select μ best individuals from P

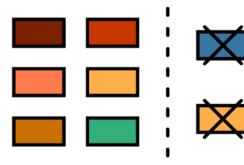
 $Best \leftarrow SelectBestIndividual(P)$

end for

return Best

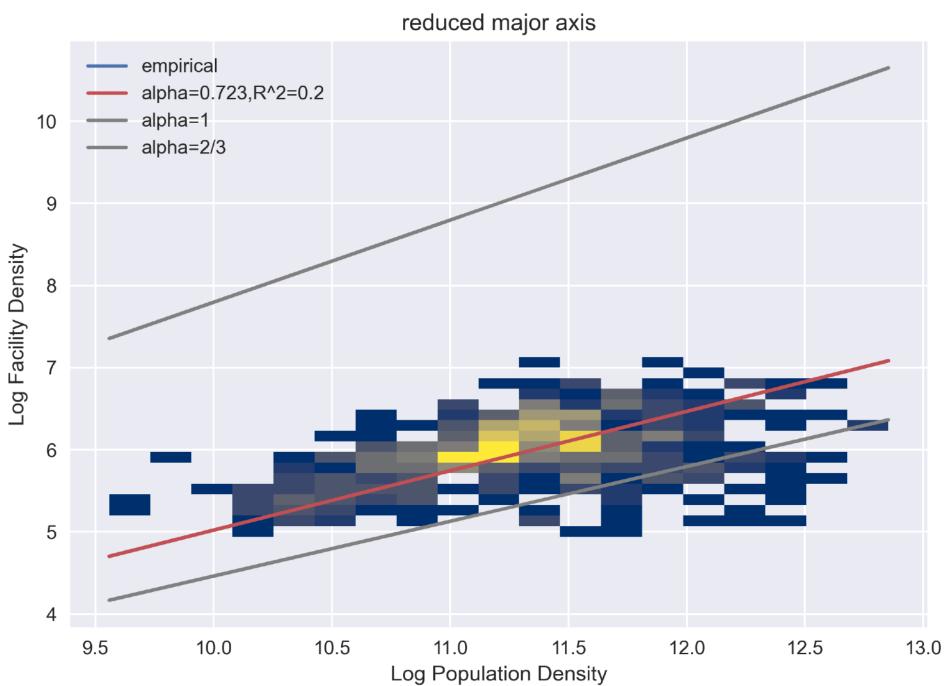
end procedure

- Randomly mutate all facilities in the population of λ facilities
- Select μ of the best facilities with tournament selection
- Pairs of head-to-head
 evaluations with replacement
 i

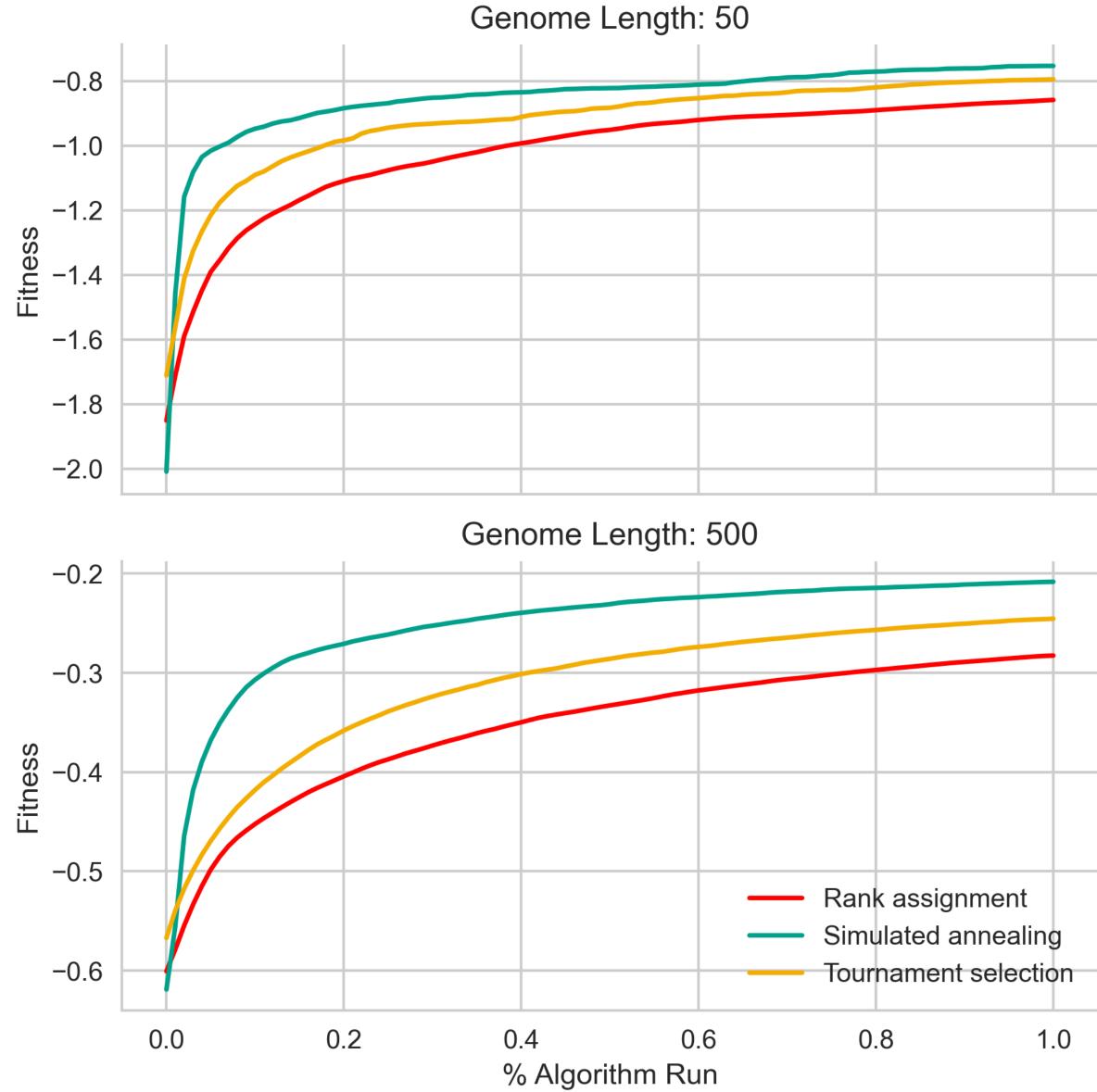


Q1: Can evolutionary algorithms identity an ideal facility placement – Yes

- Simulated annealing outperforms any other ● metric
- More variation between algorithms scaling • near to optimal
 - Near optimal scaling has ben discovered •



Evolved Facility Scaling



Changes in Supply: Natural Disasters

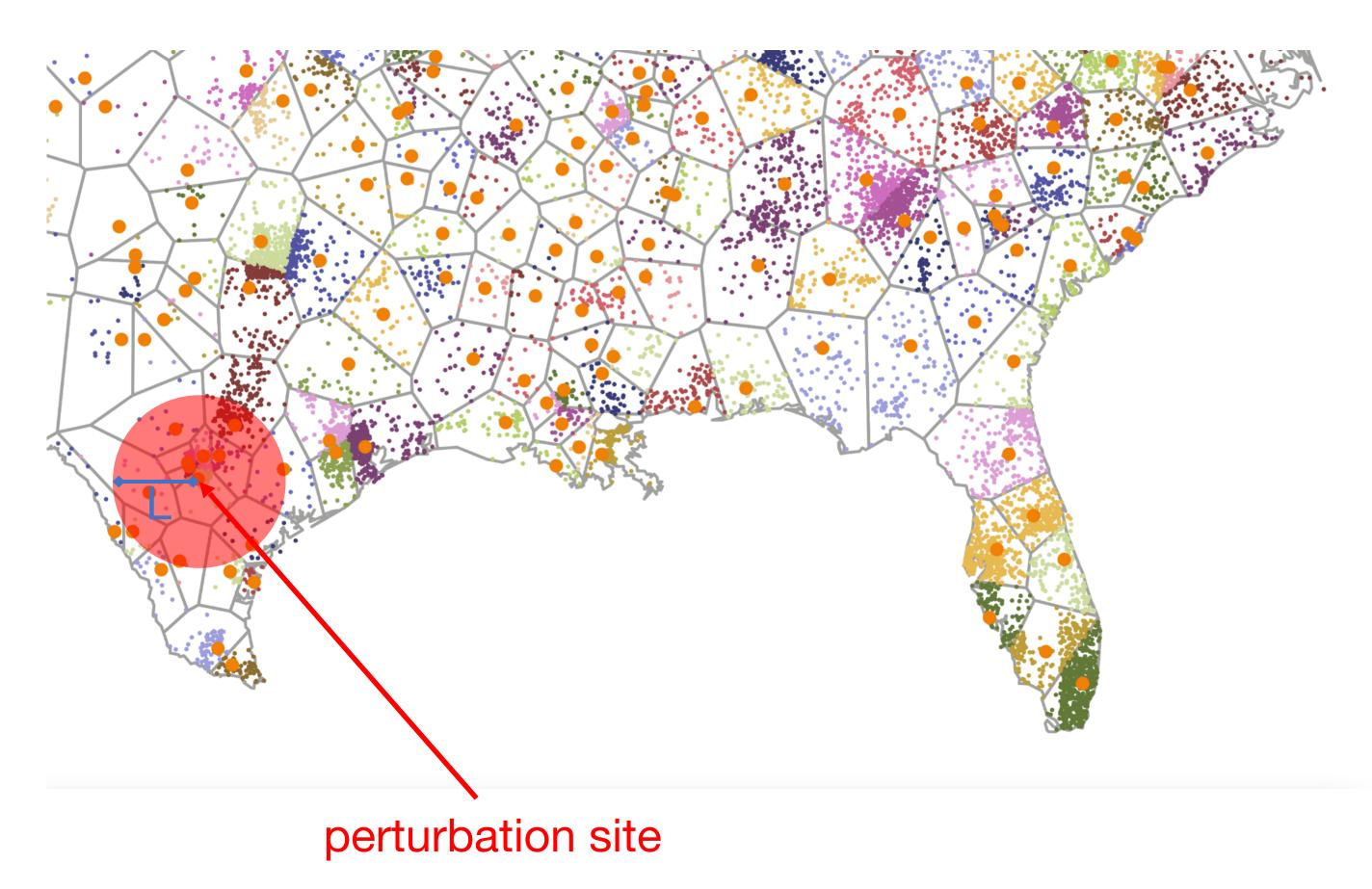
Targeted Removal

1. Select a random facility and remove it

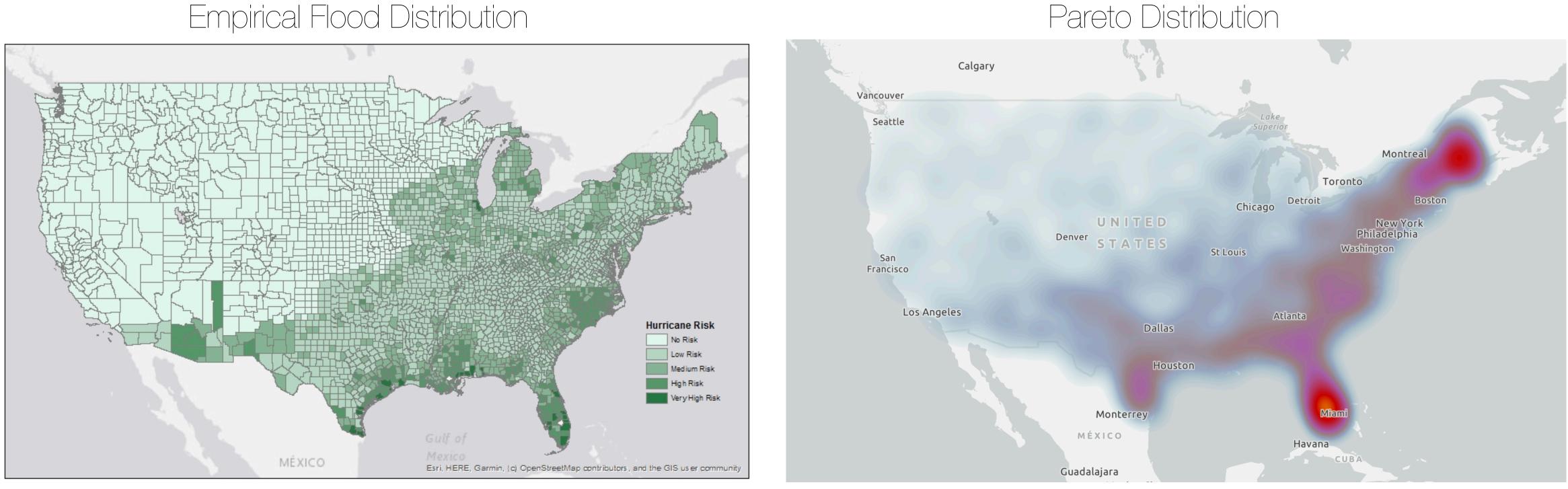
Radius Based Removal

- 1. Draw a set of catastrophe sites from a specific distribution
- 2. Find all the facilities within a distance L of a catastrophe site
- 3. Remove them
- 4. Calculate the Robustness

Robustness: How much does the average travel distance increase when facilities are removed?



Catastrophe Distribution

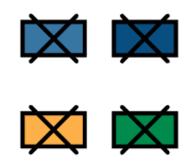


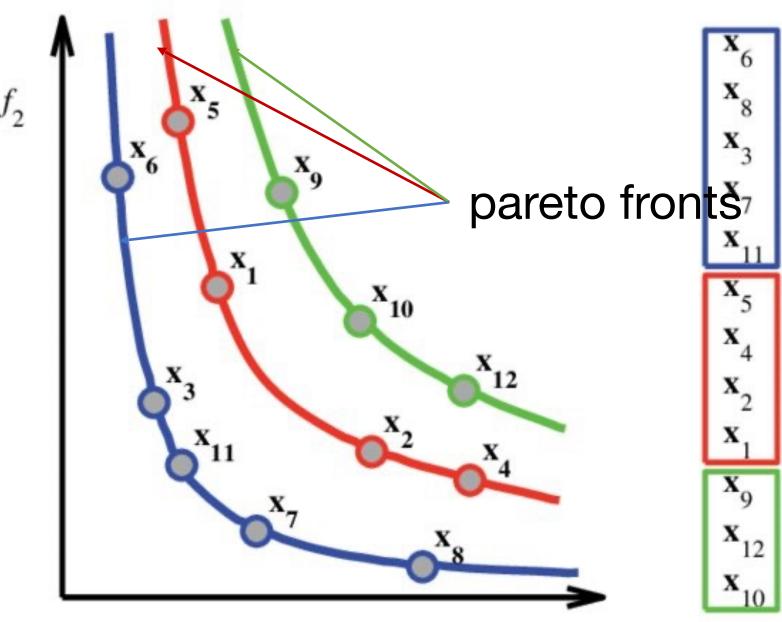
• Two choices of D(r)Uniform

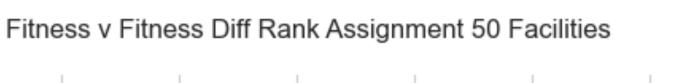
Pareto Distribution

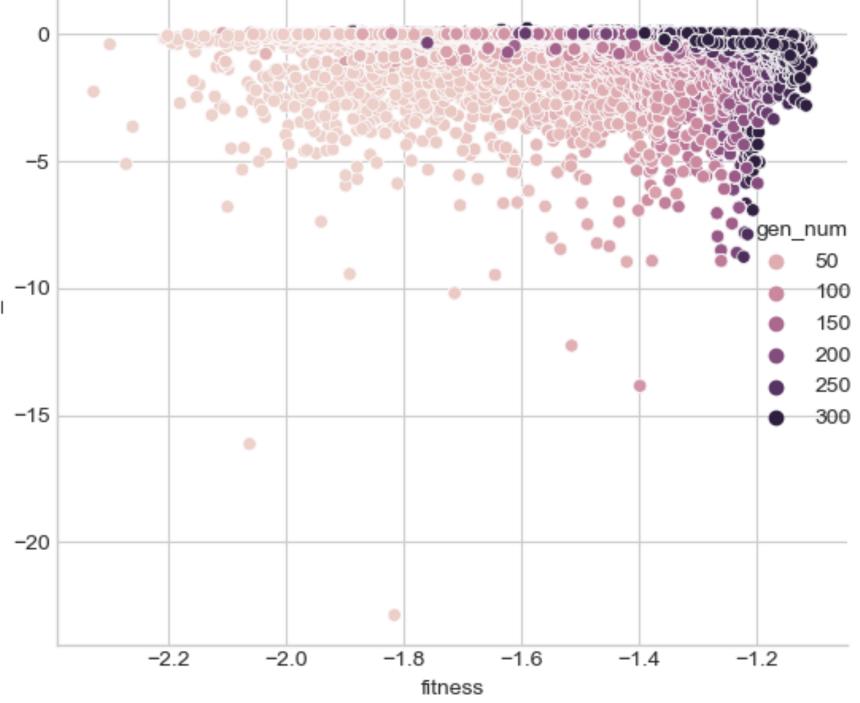
New Selection : Multi-Objective

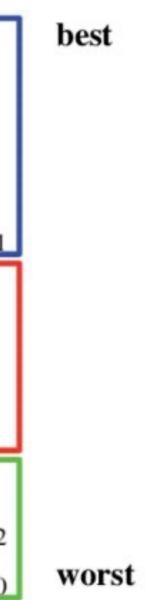
- Previous selection mechanism: tournament • selection on individuals after perturbation
- Multi-objective selection explicitly incorporate • fitness and robustness
- Non-dominated sorting rank assignment
 - Individual i dominates individual j if it is both more fit and more robust
 - Pareto-front of rank k: all individuals not \bullet dominated by an individual of a lower rank
- We call $\mu + \lambda$ algorithm with single objective tournament selection – tournament selection
- We call $\mu + \lambda$ algorithm with multi-objective rank ulletassignment – rank assignment











How do we add perturbation to the algorithm?

Algorithm 3 Simulated Annealing With Perturbation

```
1: procedure SIMULATEDANNEALING(Tmax, Tmin, \alpha)
```

- 2: Initialize solution g
- 3: Evaluate Fitness of solution f(F(g))

```
4: T \leftarrow T_{max}
```

16:

17:

18:

19:

20:

```
5: for i \leftarrow 1 to Generation do
```

```
6: g' \leftarrow Mutate(g')
```

```
g'' \leftarrow Perturb(g')
 7:
               \Delta E \leftarrow F(g^{\prime\prime}) - F(g)
 8:
               if \Delta E < 0 then
 9:
                    g \leftarrow g'
10:
                else
11:
                     p \leftarrow exp(-\Delta E/T)
12:
                     r \leftarrow random(0, 1)
13:
                     if r < p then
14:
                          g \leftarrow g'
15:
```

end if

end if

end for

return g

21: end procedure

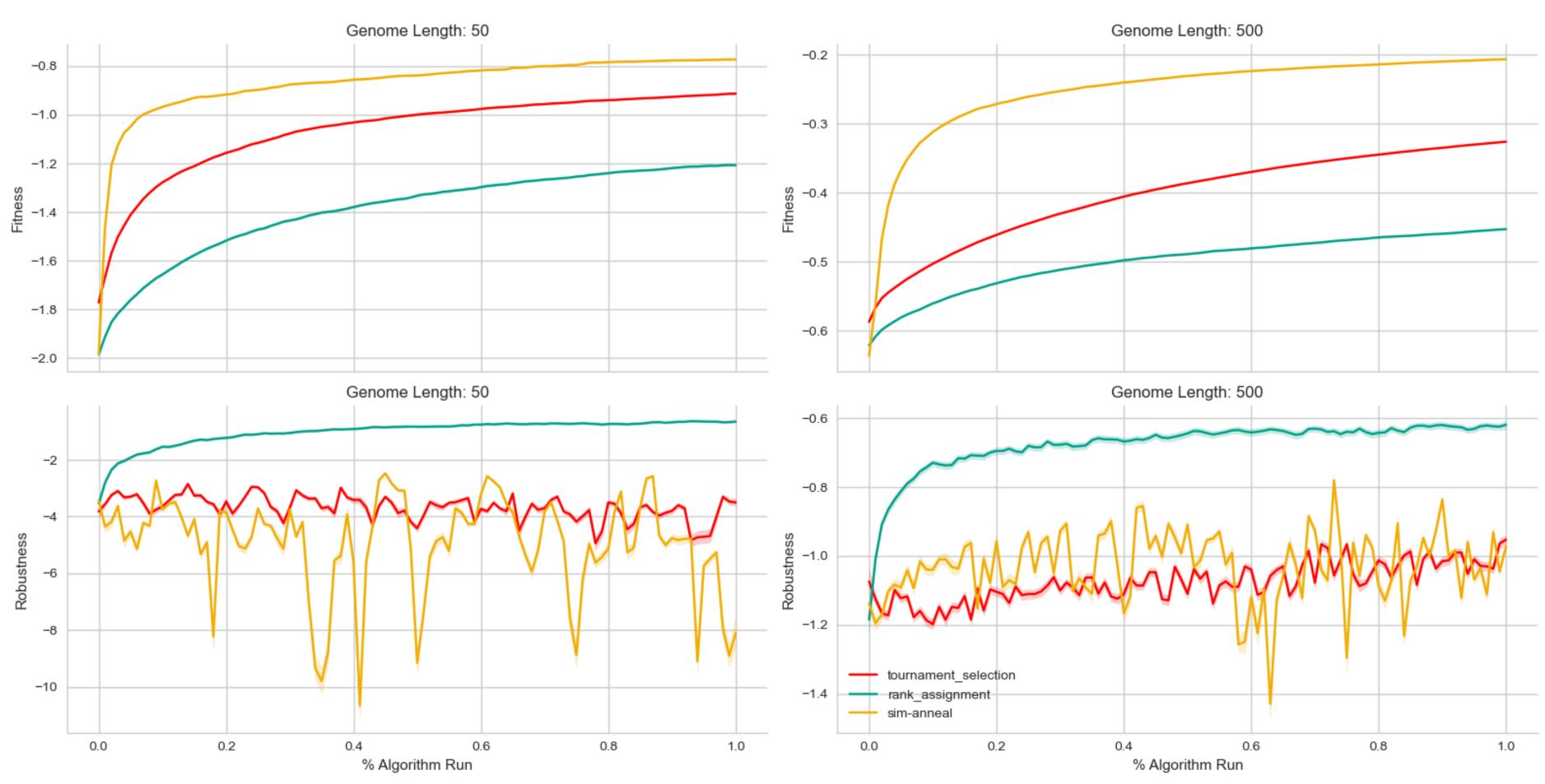
 $T \leftarrow \alpha T$

Assess of individ after - perturba - Implicit select fo solutions

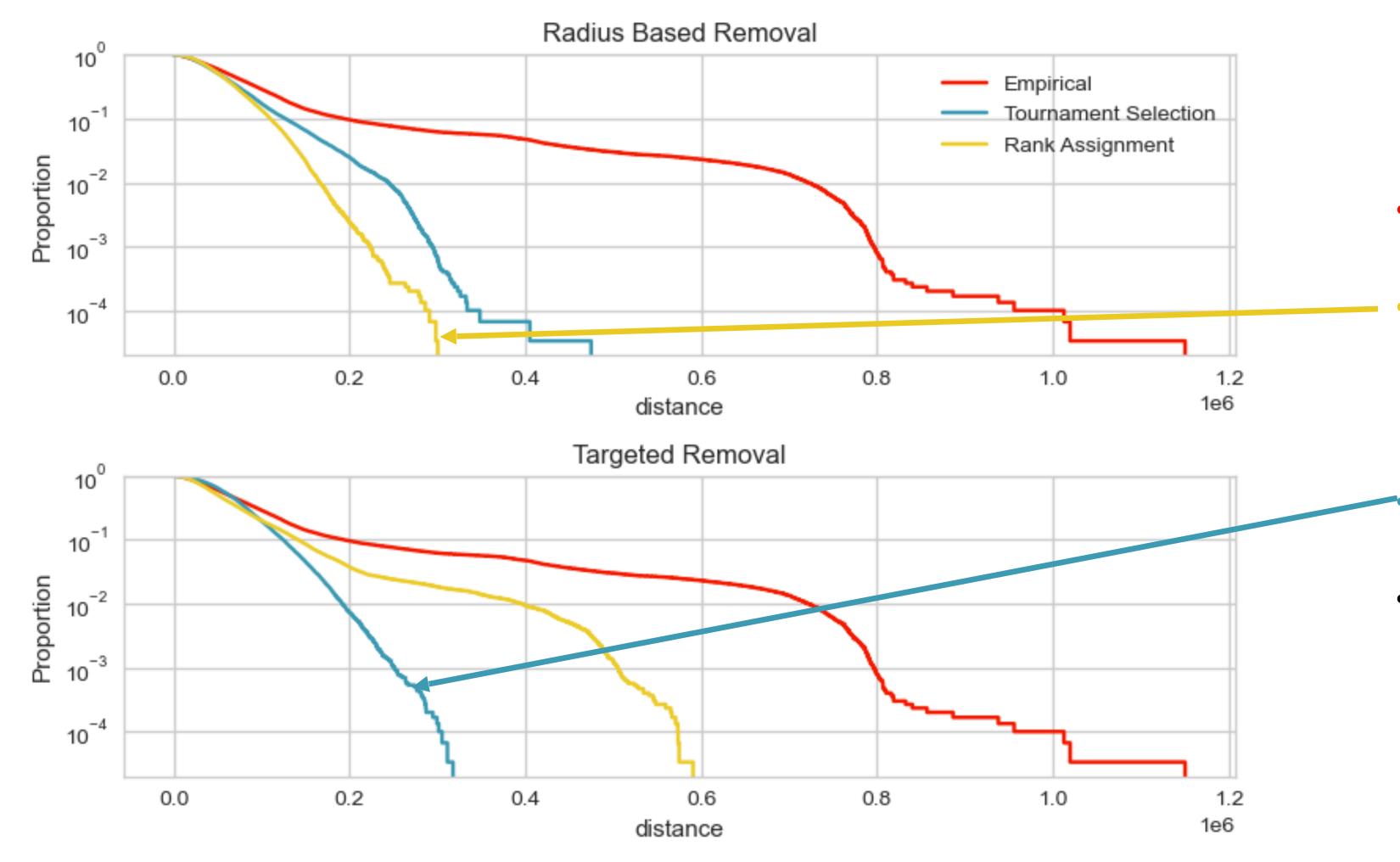
	Algorithm 4 μ + λ Evolutionary Strategy With Perturbation
	1: procedure Evolutionary Strategy(mu, lambda)
	2: $P \leftarrow$ Initialize population of λ individuals
	3: $Best \leftarrow \Box$
	4: for $i \leftarrow 1$ to Generation do
	5: $Q \leftarrow \{\}$
fitness	6: for each individual s in S do
idual	7: $g' \leftarrow Mutate(g)$
	8: $f_1 \leftarrow \text{AssessFitness}(q')$
ation ——	9: $g'' \leftarrow \operatorname{Perturb}(g')$
itly	10: $f_2 \leftarrow \text{AssessFitness}(q'')$
or robust	11: $R \leftarrow f_2 - f_1$ \triangleright calculate the robustness
	12: $Q \leftarrow (q'', f_1, R)$
IS	13: end for
	14: $P \leftarrow P \cup Q$
	15: $P \leftarrow \text{select } \mu \text{ best individuals from } P$
	16: $Best \leftarrow SelectBestIndividual(P)$
	17: end for
	18: return Best
	19: end procedure
	P

Q2: Can we evolve a robust layout of facilities – Yes!

- Simulated annealing perform
 well achieves highest absolute
 fitness
- But simulated annealing and tournament selection fail to achieve increase in robustness
 - Only rank assignment increase robustness

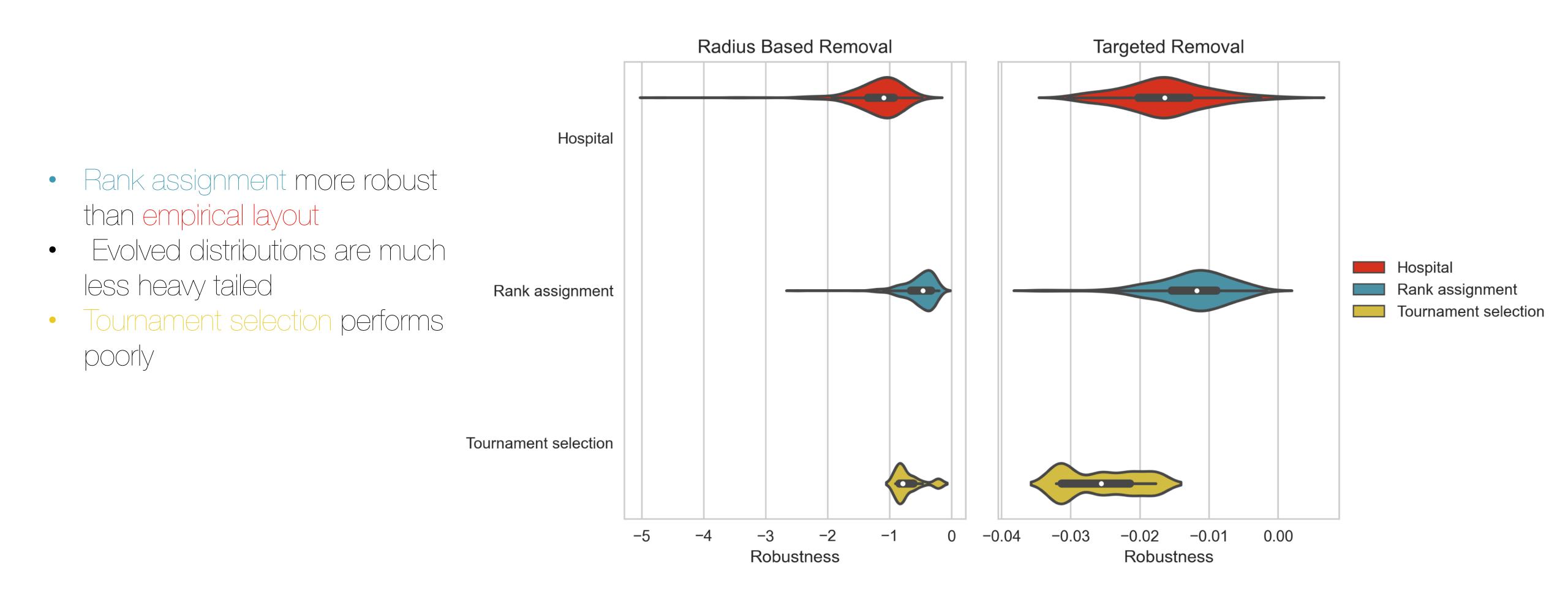


Travel Distance Comparison



- Empirical distribution is much more heavy tailed
 - rank assignment outperforms tournament selection for for radius based removal
 - Vice-versa for targeted removal
- Is targeted removal harder than radius based

Robustness Comparison

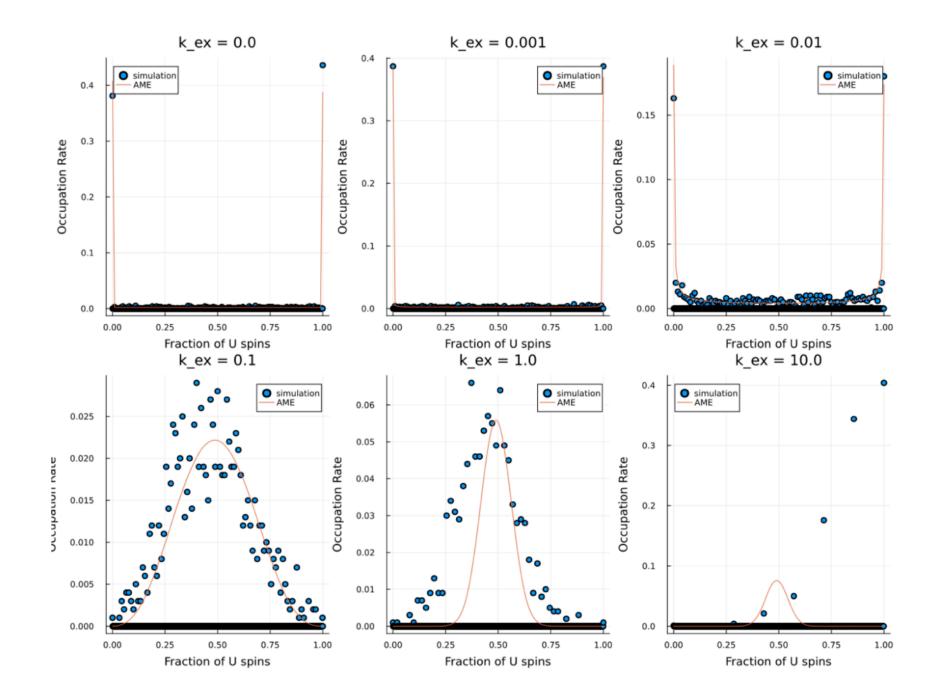


Voter Model

CONCLUSION NUMERICAL AND SIMULATION

Validating with Simulation

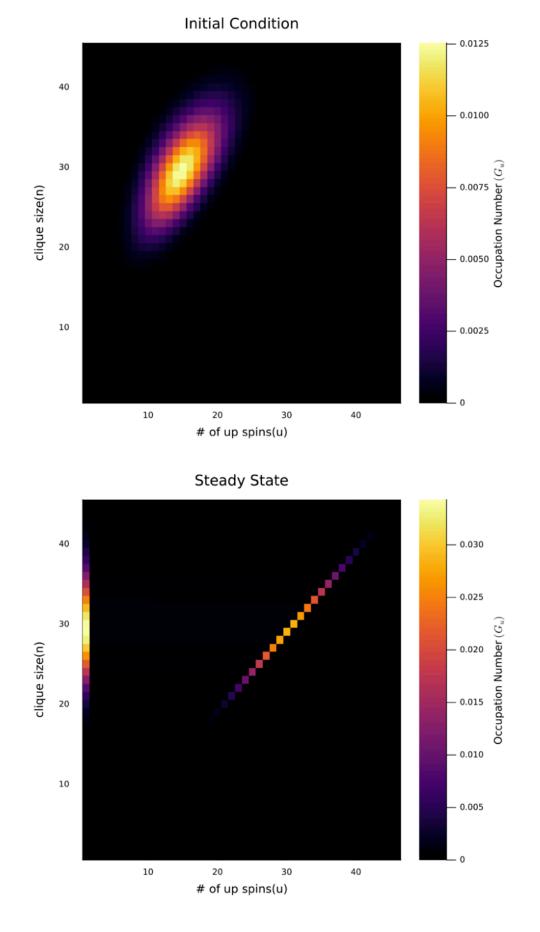
- AME distributions and simulation match for small couplings.
- Simulation and AME diverge for large couplings ($\langle k_{ex} \rangle = 10.0$)
- Discrepancy is possible due to finite size effects



CONCLUSION HETEROGENOUS GROUPS

Groups across scale

- Let's relax the assumption of fixed clique size. How do heterogenous groups interacting across scales affect the steady-state dynamics and the possibility of coexistence?
- $G_{u,n}$: the occupation number for groups of size n with u up spins.



REFERENCES

Castellano, C., Muñoz, M. A., & Pastor-Satorras, R. (2009). Nonlinear \$q\$-voter model [Publisher: American Physical Society]. Physical Review E, 80(4), 041129. https://doi.org/10.1103/PhysRevE.80.041129 Gleeson, J. P. (2011). High-accuracy approximation of binary-state dynamics on networks [arXiv:1104.1537 [cond-mat, physics:physics]]. Physical Review Letters, 107(6), 068701. https://doi.org/10.1103/PhysRevLett.107.068701 Hébert-Dufresne, L., Noël, P.-A., Marceau, V., Allard, A., & Dubé, L. J. (2010). Propagation dynamics on networks featuring complex topologies [arXiv:1005.1397 [cond-mat, physics:physics, **q-bio]].** *Physical Review E*, *82*(3), 036115. https://doi.org/10.1103/PhysRevE.82.036115 Newman, M. E. J. (2003). Properties of highly clustered networks. Physical Review E, 68(2), 026121. https://doi.org/10.1103/PhysRevE.68.026121 Peralta, A. F., Carro, A., Miguel, M. S., & Toral, R. (2018). Stochastic pair approximation treatment of the noisy voter model. New Journal of Physics, 20(10), 103045. https://doi.org/10.1088/1367-2630/aae7f5 St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J., & Hébert-Dufresne, L. (2021). Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks [arXiv:2004.10203 [nlin, physics:physics]]. Physical Review E, 103(3), 032301. https://doi.org/10.1103/PhysRevE.103.032301