INTRODUCTION
BACKGROUND

Groups Groups Groups

Social interactions are not pairwise - groups matter!

How do higher-order interactions affect the development of consensus?
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VOTER MODELS

LINEAR VOTER MODEL

Step 3: Adopt the state of that node

Step 1: Select a node at random

down spin(o; = -1) .
. up spin(o;, = 1) ‘

Voter Model Steps

1. Arandom node j with state o; € {—1, 1}, is selected

2. The selected node adopts the spin o; of a randomly selected neighbor j € N
3. Process is repeated until consensus is reached.

4. Transition rate for a node o, o fraction of disagreeing neighbors
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VOTER MODELS
NON-LINEAR

Q Voter Model Steps?

1. Arandom node ¢; selects g of its neighbors. If Transition Probability by g
all of its neighbors have the same spin, o; 10+
adopts that spin

2. Transition rate for a node
g;  fraction of disagreeing neighbors?

Flip Probability

o
L
1

What does g do?

0.2 1

» q controls the conformity bias of the model. 00 ]

0.0 0.2 0.4 0.6 0.8 1.0

» if g > 1. conformist nodes nodes, if g < 1, we - craction of Disagreeine Nodes
get the hipster nodes nodes.

4Castellano et al., 2009.
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VOTER MODELS

VOTER MODEL ON HIGHER ORDER NETWORKS

> Each node belongs to a set of cliques. Nodes Concept
iInteract with other nodes in the same clique.

» Higher-order network topology generated by . ‘\ '/
)WL E

the model proposed by Newman?.

Description

The model is parameterized by two distributions Topology Formalism
1. N the number of nodes
2. M the number of cliques
3. {pn} the distribution of nodes per clique
4. {gm} the distribution of cliques per node

4Newman, 2003.
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VOTER MODELS

VOTER MODEL ON HIGHER ORDER NETWORKS

Clique Coupling

(kex) determines the coupling between groups
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DERIVING THE MASTER EQUATION
THE FIRST TERM

» Approximate master equations(AMES) are high
accuracy approximations of binary state
dynamics on networks?

» Occupation number : G
Gy, the fraction of the system in a clique with u down spin(o; = 1)_—
up spins.

» Example: up spin out flux : the rate at which
down spins flip to up spins

N —
— \\
\~_—-—/

fraction of up spins in clique

occupation number

) q =
u clique size:n =7
P(Gu — Gu_|_1) — Gu (n — U) ( E ) up spin countu = 3
up spin out quxT T of down spins in clique

4Gleeson, 2011; Hébert-Dufresne et al., 2010; St-Onge et al., 2021.
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DERIVING THE MASTER EQUATION
THE WHOLE SHEBANG

upflip influx
[(n-u+1)(u-1)/n]G.+

upflip outflux
[(n-u)(u/n)]Gu

—
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downflip outflux
[(u(n-u)/n]Gu-1

downflip influx
[(u+1)(n-u-1)/n]G,,4

Definition 3.1
Voter Model Master Equation for Constant Clique Size with Uncoupled Cliques

up spin in flux down spin in flux
! !
dG ' u—1\7 [ m—a— N
dtUZGu—1 _(n_U+1)( . )_ + Gu+ _(U—I-'l)( n )__
[ u\9 [ n—u\?
Gy |[(n—u (—) — Gy |(u
-0 (5)] - e @ ()
(1) T up spin out flux T down spin out flux
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COUPLED CLIQUES
MOMENT CLOSURES

Definition 4.1

Moment Closure

The moment closure approximates the coupling between a group and surrounding groups

Definition 4.2

pu(t) = (Kex)

>y Gul((n—u)(3)")

pd(t) = (Kex)

>, Gu(n—u)
Zu GU(U(%)q)

Zu GU(U)

Vioter Model Master Equation for Constant Clique Size and Moment Closure

dG, i u—1\17
i NG i
Gy _(n — u) (B) + pu_
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SOLVING FOR THE STEADY STATE

Definition 5.1

Detailed Balance In equilibrium, each elementary process is in equilibrium with its reverse process.

We know the recursion formula is

C(n—u+1) o+ (55

G, = G,
- ulp + =Y “

So the formula for G, is

Ty (—utt)p+ (“F)]
GU—ZE U[,OI n;u]
Where
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LINEAR RESULTS
LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

Time Evolution of Voter Model AME with N = 100

Time(t)
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Occupation Number(G,)

Figure. Time series of numerical integration of
AME with p = 0.0 the distribution collapses two the
two absorbing states
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LINEAR RESULTS
LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

Time Evolution of Voter Model AME with N = 100 AME Steady State, q = 1.0

0.3
Time(t) P
0.15 F — 10 10e-3.0
— 30 5 10e-2.

~ ) 0e-2.0
O — 30 — 10e-1.0
E/ —— 70 R 10e0.0
Pel ———90 o 0.2 10e1.0
£ o010t 3 10€2.0
= §_ 10e3.0
-
(o) c
% S
o 8 0.1
O
O O

0.00 |, . ! | ¥| 00 L = =

0 25 50 75 100

# of Up Spins(u)

Figure. Time series of numerical integration of
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Figure. Steady state distribution for AMES as a

AME with p = 0.0 the distribution collapses two the
two absorbing states

function of p. Coexistence emerges as coupling
Increases
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LINEAR RESULTS
HETEROGENEOUS GROUP SIZES

Larger cliques support coexistence at lower coupling strengths

At (kex) = 0.05, coexistence only occurs at n > 50. At (kex) = 0.1, coexistence occurs above n > 20

AME Stationary state by clique size, (k.,) = 0.05 AME Stationary state by clique size, (k.,) = 0.1
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NON LINEAR RESULTS

Conformist nodes(g > 1) create stable minorities

» For g < 1 hipster nodes drive model towards coexistence

» For g > 1 conformist nodes create a stable minority

Non-Linear Steady State, g = 0.5
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Non-Linear Steady State, g = 1.0
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Non-Linear Steady State, g = 1.5
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VOTER MODELS
NON-LINEAR

Noisy Non Linear Voter Model”

1. Give each node a random chance to flip,
separate rates for each spin states agp, aj.

2. Total noise level € x ag + a1 £=0.20 £=0.25 £=0.30
. 2 | | [
3. Noise asymmetry level Ae x ag — aj 3 = .
g & a
Steady State Distributions 0=— R ——.—

Ae=0.01 Ae=0.02 Ae=0.03

1. Certain noise levels lead to emergence
unimodal magnetization distribution

2. Others lead to bimodal distribution

4Peralta et al., 2018.
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NON LINEAR RESULTS
PHASE DIAGRAM

Island of Minority Coexistence

» Let's determine the possible states of
the model by plotting the number of
local maxima by parameter values

» For low p, the critical transition of the
original g voter model remains the
same.

» At higher couplings p > 0.01,
consensus states become
impossible. We see a bimodal
distribution where stable minorities
coexist within cliques.
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Phase Diagram Number of Local Maxima
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