INTRODUCTION

BACKGROUND

Groups Groups

Social interactions are not pairwise - groups matter!

How do higher-order interactions affect the development of consensus?

LINEAR VOTER MODEL

Step 1: Select a node at random

Step 2: Select a neighbor at random

Step 3: Adopt the state of that node down spin($\sigma_i = -1$)

up spin($\sigma_i = 1$)

Voter Model Steps

- 1. A random node *i* with state $\sigma_i \in \{-1, 1\}$, is selected
- 2. The selected node adopts the spin σ_j of a randomly selected neighbor $j \in \mathcal{N}_i$
- 3. Process is repeated until consensus is reached.
- 4. Transition rate for a node $\dot{\sigma}_i \propto \text{fraction of disagreeing neighbors}$

Non-Linear

Q Voter Model Steps^a

- 1. A random node σ_i selects q of its neighbors. If all of its neighbors have the same spin, σ_i adopts that spin
- 2. Transition rate for a node $\dot{\sigma}_i \propto \text{fraction of disagreeing neighbors}^q$

What does q do?

- q controls the conformity bias of the model.
- ▶ if q > 1: conformist nodes nodes, if q < 1, we get the hipster nodes nodes.

^aCastellano et al., 2009.

Voter Model on Higher Order Networks

- Each node belongs to a set of cliques. Nodes interact with other nodes in the same clique.
- Higher-order network topology generated by the model proposed by Newman^a.

Description

The model is parameterized by two distributions

- 1. N the number of nodes
- 2. M the number of cliques
- 3. $\{p_n\}$ the distribution of nodes per clique
- 4. $\{g_m\}$ the distribution of cliques per node

^aNewman 2003

VOTER MODEL ON HIGHER ORDER NETWORKS

Clique Coupling

 $\langle k_{ex} \rangle$ determines the coupling between groups

DERIVING THE MASTER EQUATION

THE FIRST TERM

- Approximate master equations(AMES) are high accuracy approximations of binary state dynamics on networks^a
- Occupation number:
 Gu the fraction of the system in a clique with u up spins.
- Example: up spin out flux : the rate at which down spins flip to up spins

^aGleeson, 2011; Hébert-Dufresne et al., 2010; St-Onge et al., 2021.

DERIVING THE MASTER EQUATION

THE WHOLE SHEBANG

Definition 3.1

Voter Model Master Equation for Constant Clique Size with Uncoupled Cliques

(1)

COUPLED CLIQUES

MOMENT CLOSURES

Definition 4.1

Moment Closure

The moment closure approximates the coupling between a group and surrounding groups

$$\rho_u(t) = \langle k_{ex} \rangle \frac{\sum_u G_u((n-u)(\frac{u}{n})^q)}{\sum_u G_u(n-u)}$$
(2)

$$\rho_d(t) = \langle k_{ex} \rangle \frac{\sum_u G_u(u(\frac{n-u}{n})^q)}{\sum_u G_u(u)}$$
(3)

Definition 4.2

Voter Model Master Equation for Constant Clique Size and Moment Closure

$$\frac{dG_{u}}{dt} = G_{u-1} \left[(n-u+1) \left(\frac{u-1}{n} \right)^{q} + \rho_{u} \right] + G_{u+1} \left[(u+1) \left(\frac{n-u-1}{n} \right)^{q} + \rho_{d} \right] - G_{u} \left[(n-u) \left(\frac{u}{n} \right)^{q} + \rho_{u} \right] - G_{u} \left[(u) \left(\frac{n-u}{n} \right)^{q} + \rho_{d} \right]$$
(4)

SOLVING FOR THE STEADY STATE

Definition 5.1

Detailed Balance In equilibrium, each elementary process is in equilibrium with its reverse process.

$$P(G_u \rightarrow G_{u+1}) = P(G_{u+1} \rightarrow G_u)$$

$$P(G_u \rightarrow G_{u-1}) = P(G_{u-1} \rightarrow G_u)$$

We know the recursion formula is

$$G_{u} = \frac{(n-u+1)\left[\rho + \left(\frac{u-1}{n}\right)^{q}\right]}{u[\rho + \frac{n-u}{n}]}G_{u-1}$$

So the formula for G_u is

$$G_{u} = \frac{1}{Z} \prod_{i=0}^{u} \frac{(n-u+1)\left[\rho + \left(\frac{u-1}{n}\right)\right]}{u\left[\rho + \frac{n-u}{n}\right]}$$

Where

$$Z = \sum_{u=1}^{N} \prod_{j=0}^{u} \frac{(n-j+1) \left[\rho + \left(\frac{j-1}{n}\right)\right]}{j[\rho + \left(\frac{j-1}{n}\right)]}$$

LINEAR RESULTS

LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

Figure. Time series of numerical integration of AME with $\rho=$ 0.0 the distribution collapses two the two absorbing states

LINEAR RESULTS

LINEAR VOTER MODEL(Q = 1)

Coexistence emerges as coupling increases

Figure. Time series of numerical integration of AME with $\rho=$ 0.0 the distribution collapses two the two absorbing states

Figure. Steady state distribution for AMES as a function of ρ . Coexistence emerges as coupling increases

LINEAR RESULTS

HETEROGENEOUS GROUP SIZES

Larger cliques support coexistence at lower coupling strengths

At $\langle k_{ex} \rangle = 0.05$, coexistence only occurs at n > 50. At $\langle k_{ex} \rangle = 0.1$, coexistence occurs above n > 20

Non Linear Results

Conformist nodes(q > 1) create stable minorities

- For q < 1 hipster nodes drive model towards coexistence
- For q > 1 conformist nodes create a stable minority

Non-Linear

Noisy Non Linear Voter Model^a

- 1. Give each node a random chance to flip, separate rates for each spin states a_0 , a_1 .
- 2. Total noise level $\epsilon \propto a_0 + a_1$
- 3. Noise asymmetry level $\Delta\epsilon \propto a_0 a_1$

Steady State Distributions

- 1. Certain noise levels lead to emergence unimodal magnetization distribution
- 2. Others lead to bimodal distribution

^aPeralta et al., 2018.

Non Linear Results

PHASE DIAGRAM

Island of Minority Coexistence

- Let's determine the possible states of the model by plotting the number of local maxima by parameter values
- For low ρ , the critical transition of the original q voter model remains the same.
- At higher couplings $\rho > 0.01$, consensus states become impossible. We see a bimodal distribution where stable minorities coexist within cliques.

Phase Diagram Number of Local Maxima

